【題目】如圖,已知△ABC中,∠B=∠E=40°,∠BAE=60°,且AD平分∠BAE交BC于D.
(1)求證:BD=DE;
(2)若AB=CD,求∠ACD的大。
【答案】(1)證明見解析;(2)40°
【解析】
(1)要求證:BD=DE可以證明△ABD≌△AED,根據(jù)角角邊定理就可以證出;
(2)根據(jù)AB=AE, AB=CD,得CD=AE,由三角形內(nèi)角和定理和三角形的外角性質(zhì)推理可得∠EDC=∠E,則FD=FE,所以CF=AF,再由三角形內(nèi)角和求出∠ACD.
(1)證明:
∵AD平分∠BAE,
∴∠BAD=∠EAD=30° ,
∵AD=AD,
∵∠B=∠E=40°,
∴△ABD≌△AED ,
∴BD=ED;
(2)解:在△ABD中,
∠ADB=180°﹣∠B﹣∠BAD=110°,
∵△ABD≌△AED,
∴∠ADE=∠ADB=110°,
∵∠ADC=∠B+∠BAD= 70°,
∴∠EDC=∠ADE -∠ADC =110°﹣70°=40°,
∴∠EDC=∠E,
∴FD=FE,
∵AE=AB=CD,
∴EA-EF=DC-DF,
即CF=AF,
∵∠AFC=∠B+∠BAE=60°+40°=100°,
∴∠ACD=(180°-∠AFC)=(180°-100°)= 40°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】林叢同學(xué)調(diào)查了全班50名同學(xué)分別喜歡相聲、小品、歌曲、舞蹈節(jié)目的情況,并制成下面的統(tǒng)計(jì)表:
最喜歡的節(jié)目類型 | 劃記 | 人數(shù) | 百分比 |
相聲 | 正 | 13 | 26% |
小品 | 正正正一 | 21 | 42% |
歌曲 | 正正 | 10 | 28% |
舞蹈 | 正一 | 6 | 12% |
在上表所給的數(shù)據(jù)中,僅有一類節(jié)目的統(tǒng)計(jì)是完全正確的,則該項(xiàng)目統(tǒng)計(jì)類別是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,表示5與-2之差的絕對值,實(shí)際上也可理解為5與-2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離,試探索:
(1)求=________.
(2)若=5,則x=____.
(3)同理表示數(shù)軸上有理數(shù)x所對應(yīng)的點(diǎn)到-1和2所對應(yīng)的兩點(diǎn)距離之和,請你找出所有符合條件的整數(shù)x,使得=3,這樣的整數(shù)是________(直接寫答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點(diǎn)D、E為BC邊上的兩點(diǎn),且∠DAE=45°,連接EF、BF,則下列結(jié)論: ①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2 , 其中正確的有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,,AB的垂直平分線交AB于D,交AC于點(diǎn)E,連接BE,∠EBC=45°,DE=3,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設(shè)計(jì)出來;
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某品牌的飲料有大瓶裝與小瓶裝之分.某超市花了3800元購進(jìn)一批該品牌的飲料共1000瓶,其中大瓶和小瓶飲料的進(jìn)價(jià)及售價(jià)如下表所示:
大瓶 | 小瓶 | |
進(jìn)價(jià)(元/瓶) | 5 | 2 |
售價(jià)(元/瓶) | 7 | 3 |
(1)該超市購進(jìn)大瓶和小瓶飲料各多少瓶?
(2)在大瓶飲料售出200瓶,小瓶飲料售出100瓶后,商家決定將剩下的小瓶飲料的售價(jià)降低0.5元銷售,并把其中一定數(shù)量的小瓶飲料作為贈(zèng)品,在顧客一次性購買大瓶飲料時(shí),每滿2瓶就送1瓶小瓶飲料,送完即止.超市要使這批飲料售完后獲得的利潤不低于1250元,那么小瓶飲料作為贈(zèng)品最多只能送出多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲招收職員一名,從學(xué)歷、經(jīng)驗(yàn)和工作態(tài)度等三個(gè)方面對甲乙丙進(jìn)行了初步測試,測試成績?nèi)缦卤恚?/span>
(1)如果將學(xué)歷、經(jīng)驗(yàn)和工作態(tài)度三項(xiàng)得分按的比例確定各人的最終得分,并以此為據(jù)確定錄用者,那么誰將被錄用?
(2)自己確定學(xué)歷、經(jīng)驗(yàn)和工作態(tài)度三項(xiàng)的權(quán),并根據(jù)自己的方案確定錄用者.
應(yīng)聘者 | 甲 | 乙 | 丙 |
項(xiàng)目 | |||
學(xué)歷 | |||
經(jīng)驗(yàn) | |||
工作態(tài)度 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于( )
A.60
B.80
C.30
D.40
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com