19、如圖,在等邊△ABC中,AC=6,點O在AC上,且AO=2,點P是AB上一動點,連接OP,將線段OP繞點O逆時針旋轉(zhuǎn)60°得到線段OD.要使點D恰好落在BC上,則AP的長是多少?
分析:根據(jù)旋轉(zhuǎn)的性質(zhì)以及等邊三角形的性質(zhì)得出DO=OP,AP=CO即可得出答案.
解答:解:∵在等邊△ABC中,AC=6,點O在AC上,且AO=2,將線段OP繞點O逆時針旋轉(zhuǎn)60°得到線段OD,使點D恰好落在BC上,
∴DO⊥BC時,符合要求,
∴∠C=60°,CO=4,∠COD=30°,
∴CD=2,
∵AO=2,OP=OD,
∴△AOP≌△CDO,
∴AP=CO=4.
點評:本題主要考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的性質(zhì),根據(jù)題意得出DO=OP,AP=CO是解決問題的關鍵,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點E在AC邊上,且∠EDC=15°.
(1)試說明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,D是AC的中點,延長BC到點E,使CE=CD,AB=10cm.
(1)求BE的長;
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點,且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習冊答案