【題目】如圖,已知拋物線y=ax2+bx+c與軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個單位,得到拋物線y=a1x2+b1x+c1 , 則下列結(jié)論:
①b>0;②a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.
正確的是( 。

A.①③
B.②③
C.②④
D.③④

【答案】D
【解析】解:∵拋物線開口向上,
∴a>0,
又∵對稱軸為x=﹣>0,
∴b<0,
∴結(jié)論①不正確;
∵x=﹣1時,y>0,
∴a﹣b+c>0,
∴結(jié)論②不正確;
∵拋物線向右平移了2個單位,
∴平行四邊形的底是2,
∵函數(shù)y=ax2+bx+c的最小值是y=﹣2,
∴平行四邊形的高是2,
∴陰影部分的面積是:2×2=4,
∴結(jié)論③正確;
, c=﹣1,
∴b2=4a,
∴結(jié)論④正確.
綜上,結(jié)論正確的是:③④.
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,BD是它的一條對角線,過A、C兩點(diǎn)作AE⊥BD,CF⊥BD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N.

(1)求證:四邊形CMAN是平行四邊形.
(2)已知DE=4,F(xiàn)N=3,求BN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:
①b2>4ac;②2a+b=0;③a+b+c>0;④若點(diǎn)B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2 ,
其中正確結(jié)論是( 。

A.②④
B.①④
C.①③
D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.

(1)求證:PC是⊙O的切線;
(2)求證:BC= AB;
(3)點(diǎn)M是 的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,蹺蹺板AB的一端B碰到地面時,AB與地面的夾角為18°,且OA=OB=3m.

(1)求此時另一端A離地面的距離(精確到0.1m);
(2)蹺動AB,使端點(diǎn)A碰到地面,請畫出點(diǎn)A運(yùn)動的路線(寫出畫法,并保留畫圖痕跡),并求出點(diǎn)A運(yùn)動路線的長.
(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y= k x 的圖象交于A、B兩點(diǎn),過點(diǎn)A作AC垂直x軸于點(diǎn)C,連結(jié)BC.若△ABC的面積為2.

(1)求k的值;
(2)利用圖象求出不等式2x> 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式
12=1= ×1×2×(2+1)
12+22= ×2×3×(4+1)
12+22+32= ×3×4×(6+1)
12+22+32+42= ×4×5×(8+1)…
可以推測12+22+32+…+n2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象在第一象限交于點(diǎn)A(4,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=6,
(1)求函數(shù)y= 和y=kx+b的解析式.
(2)已知直線AB與x軸相交于點(diǎn)C,在第一象限內(nèi),求反比例函數(shù)y= 的圖象上一點(diǎn)P,使得SPOC=9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是 .若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線y= (x>0)的交點(diǎn)有(
A.0個
B.1個
C.2個
D.0個,或1個,或2個

查看答案和解析>>

同步練習(xí)冊答案