【題目】如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.
(1)求證:∠CBE=∠F;
(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.
【答案】(1)詳見解析;(2)
【解析】
(1)連接OE交DF于點H,由切線的性質(zhì)得出∠F+∠EHF =90,由FD⊥OC得出∠DOH+∠DHO =90,依據(jù)對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據(jù)∠CBE=∠DOH,從而即可得證;
(2)依據(jù)圓周角定理及其推論得出∠F=∠COE=2∠CBE =30°,求出OD的值,利用銳角三角函數(shù)的定義求出OH的值,進一步求得HE的值,利用銳角三角函數(shù)的定義進一步求得EF的值.
(1)證明:連接OE交DF于點H,
∵EF是⊙O的切線,OE是⊙O的半徑,
∴OE⊥EF.
∴∠F+∠EHF=90°.
∵FD⊥OC,
∴∠DOH+∠DHO=90°.
∵∠EHF=∠DHO,
∴∠F=∠DOH.
∵∠CBE=∠DOH,
∴
(2)解:∵∠CBE=15°,
∴∠F=∠COE=2∠CBE=30°.
∵⊙O的半徑是,點D是OC中點,
∴.
在Rt△ODH中,cos∠DOH=,
∴OH=2.
∴.
在Rt△FEH中,
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的表達式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當(dāng)△BCD的面積最大時,求點P的坐標(biāo);
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,N是線段EF上一動點,M(m,0)是x軸上一動點,若∠MNC=90°,直接寫出實數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAC為圓O內(nèi)接三角形,AB=AC,D為⊙O上一點,連接CD、BD,BD與AC交于點E,且BC2=ACCE
①求證:∠CDB=∠CBD;
②若∠D=30°,且⊙O的半徑為3+,I為△BCD內(nèi)心,求OI的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點.
(1)試用含的代數(shù)式表示拋物線的頂點坐標(biāo);
(2)將拋物線沿直線翻折,得到的新拋物線與軸交于點.若,,求的值;
(3)已知,,在(2)的條件下,當(dāng)線段與拋物線只有一個公共點時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織學(xué)生到首鋼西十冬奧廣場開展綜合實踐活動,數(shù)學(xué)小組的同學(xué)們在距奧組委辦公樓(原首鋼老廠區(qū)的筒倉)20m的點B處,用高為0.8m的測角儀測得筒倉頂點C的仰角為63°,則筒倉CD的高約為______m.(精確到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為2009年到2015年中關(guān)村國家自主創(chuàng)新示范區(qū)企業(yè)經(jīng)營技術(shù)收入的統(tǒng)計圖.下面四個推斷:
①2009年到2015年技術(shù)收入持續(xù)增長;
②2009年到2015年技術(shù)收入的中位數(shù)是4032億;
③2009年到2015年技術(shù)收入增幅最大的是2015年;
④2009年到2011年的技術(shù)收入增長的平均數(shù)比2013年到2015年技術(shù)收入增長的平均數(shù)大.
其中,正確的是( )
A.①③B.①④C.②③D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級共有8個班,241名同學(xué),歷史老師為了了解新中考模式下該校八年級學(xué)生選修歷史學(xué)科的意向,請小紅,小亮,小軍三位同學(xué)分別進行抽樣調(diào)查.三位同學(xué)調(diào)查結(jié)果反饋如下:
小紅、小亮和小軍三人中,你認(rèn)為哪位同學(xué)的調(diào)查結(jié)果較好地反映了該校八年級同學(xué)選修歷史的意向,請說出理由,并由此估計全年級有意向選修歷史的同學(xué)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點P和直線m,給出如下定義:若存在一點P,使得點P到直線m的距離等于1,則稱P為直線m的平行點.
(1)當(dāng)直線m的表達式為y=x時,
①在點,,中,直線m的平行點是______;
②⊙O的半徑為,點Q在⊙O上,若點Q為直線m的平行點,求點Q的坐標(biāo).
(2)點A的坐標(biāo)為(n,0),⊙A半徑等于1,若⊙A上存在直線的平行點,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(1-a)x2+8x+b的圖象的一部分如圖所示,拋物線的頂點在第一象限,且經(jīng)過點A(0,-7)和點B.
(1)求a的取值范圍;
(2)若OA=2OB,求拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com