【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)為(6,4).

(1)請用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點(diǎn)A和點(diǎn)C,且使∠ABC=90°,ABCAOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)

(2)問:(1)中這樣的直線AC是否唯一?若唯一,請說明理由;若不唯一,請?jiān)趫D中畫出所有這樣的直線AC,并寫出與之對應(yīng)的函數(shù)表達(dá)式.

【答案】(1)畫圖見解析;(2)這樣的直線不唯一,畫圖見解析,解析式見解析.

【解析】(1)①作線段OB的垂直平分線AC,滿足條件,②作矩形OA′BC′,直線A′C′,滿足條件;

(2)分兩種情形分別求解即可解決問題;

(1)如圖ABC即為所求;

(2)這樣的直線不唯一.

①作線段OB的垂直平分線AC,滿足條件,此時(shí)直線的解析式為y=-x+

②作矩形OA′BC′,直線A′C′,滿足條件,此時(shí)直線A′C′的解析式為y=-x+4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程的兩個(gè)實(shí)數(shù)根都是整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABCBC邊上一點(diǎn)O為圓心的圓,經(jīng)過A、B兩點(diǎn),且與BC邊交于點(diǎn)E,DBE的下半圓弧的中點(diǎn),連接ADBCF,若AC=FC.

(1)求證:AC是⊙O的切線:

(2)BF=8,DF=,求⊙O的半徑;

(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一貨輪在A處測得燈塔P在貨輪的北偏西23°的方向上,隨后貨輪以80海里/時(shí)的速度按北偏東30°的方向航行,1小時(shí)后到達(dá)B處,此時(shí)又測得燈塔P在貨輪的北偏西68°的方向上,求此時(shí)貨輪距燈塔P的距離PB.(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,是一種折疊椅,忽略其支架等的寬度,得到它的側(cè)面簡化結(jié)構(gòu)圖(圖2),支架與坐板均用線段表示.若坐板CD平行于地面,前支撐架AB與后支撐架OF分別與CD交于點(diǎn)E,D,ED=25cm,OD=20cm,DF=40cm,ODC=60°,AED=50°.

(1)求兩支架著地點(diǎn)B,F(xiàn)之間的距離;

(2)若A、D兩點(diǎn)所在的直線正好與地面垂直,求椅子的高度.

(結(jié)果取整數(shù),參數(shù)數(shù)據(jù):sin60°=0.87,cos60°=0.5,tan60°=1.73,sin50°=0.77,cos50°=0.64,tan50°=1.19)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校自主開發(fā)了A書法、B閱讀,C繪畫,D器樂四門選修課程供學(xué)生選擇,每門課程被選到的機(jī)會(huì)均等.

(1)若學(xué)生小玲計(jì)劃選修兩門課程,請寫出她所有可能的選法;

(2)若學(xué)生小強(qiáng)和小明各計(jì)劃選修一門課程,則他們兩人恰好選修同一門課程的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣2x2+bx+c經(jīng)過點(diǎn)A(﹣1,﹣3)和點(diǎn)B(2,3)

(1)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式.

(2)點(diǎn)Mx1y1)、Nx2,y2)在這條拋物線上,當(dāng)1≤x2x1時(shí),比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬 AB xm,面積為 Sm2

1 S x 的函數(shù)關(guān)系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長是多少米?

3 當(dāng) AB 的長是多少米時(shí),圍成的花圃的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)化簡;

(2)如圖,已知△ABC,按如下步驟作圖:

①分別以AC為圓心,大于AC的長為半徑畫弧,兩弧交于P, Q兩點(diǎn);

②作直線PQ,分別交AB,AC于點(diǎn)E,D

③過CCFABPQ于點(diǎn)F

求證:△AED≌△CFD;

查看答案和解析>>

同步練習(xí)冊答案