“城市發(fā)展交通先行”,成都市今年在中心城區(qū)啟動了緩堵保暢的二環(huán)路高架橋快速通道建設(shè)工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù),且當(dāng)0<x≤28時,V=80;當(dāng)28<x≤188時,V是x的一次函數(shù).函數(shù)關(guān)系如圖所示.
(1)求當(dāng)28<x≤188時,V關(guān)于x的函數(shù)表達(dá)式;
(2)若車流速度V不低于50千米/時,求當(dāng)車流密度x為多少時,車流量P(單位:輛/時)達(dá)到最大,并求出這一最大值.
(注:車流量是單位時間內(nèi)通過觀測點的車輛數(shù),計算公式為:車流量=車流速度×車流密度)
(1)設(shè)函數(shù)解析式為V=kx+b,
28k+b=80
188k+b=0
,
解得:
k=-
1
2
b=94
,
故V關(guān)于x的函數(shù)表達(dá)式為:V=-
1
2
x+94(28<x≤188);

(2)當(dāng)V≥50時,包含V=80,由函數(shù)圖象可知,
當(dāng)V=80時,0<x≤28,此時P=80x,P是x的增函數(shù),
當(dāng)x=28時,P最大=2240,
由題意得,V=-
1
2
x+94≥50,
解得:x≤88,
又P=Vx=(-
1
2
x+94)x=-
1
2
x2+94x,
當(dāng)28<x≤88時,函數(shù)為增函數(shù),即當(dāng)x=88時,P取得最大值,
故Pmax=-
1
2
×882+94×88=4400,
∵2240<4400,
所以,當(dāng)x=88時,P取得最大為4400,
答:當(dāng)車流密度達(dá)到88輛/千米時,車流量P達(dá)到最大,最大值為4400輛/時.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線AB與直線BC相交于點B(-2,2),直線AB與y軸相交于點A(0,4),直線BC與x軸、y軸分別相交于點D(-1,0)、點C.
(1)求直線AB的解析式;
(2)過點A作BC的平行線交x軸于點E,求點E的坐標(biāo);
(3)在(2)的條件下,點P是直線AB上一動點且在x軸的上方,如果以點D、E、P、Q為頂點的平行四邊形的面積等于△ABC面積,請求出點P的坐標(biāo),并直接寫出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直線y=kx+b過點A(2,0),且與x、y軸圍成的三角形面積為1,求此直線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間t(秒)之間的函數(shù)圖象,圖③是P點的縱坐標(biāo)y與P點運動的路程s之間的函數(shù)圖象的一部分.

(1)s與t之間的函數(shù)關(guān)系式是:______;
(2)與圖③相對應(yīng)的P點的運動路徑是:______;P點出發(fā)______秒首次到達(dá)點B;
(3)寫出當(dāng)3≤s≤8時,y與s之間的函數(shù)關(guān)系式,并在圖③中補全函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某航空公司規(guī)定,旅客乘機所攜帶行李的質(zhì)量x(kg)與其運費y(元)由如圖所示的一次函數(shù)圖象確定,那么旅客可攜帶的免費行李的最大質(zhì)量( 。
A.20kgB.25kgC.28kgD.30kg

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知如圖△ABC的面積為16,AB=AC=8,D是BC上任意一點,過D作DE⊥AC,DF⊥AB,垂足為E,F(xiàn),若DF=x,DE=y,y關(guān)于x的函數(shù)關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小麗一家利用元旦三天駕車到某景點旅游,小汽車出發(fā)前油箱有油36L,行駛?cè)舾尚r后,中途在加油站加油若干升,油箱中余油量Q(L)與行駛時間t(h)之間的關(guān)系如圖所示,根據(jù)圖象回答下列問題:
(1)汽車行駛______h后加油,中途加油______L;
(2)求加油前油箱余沒油量Q與行駛時間t之間的函數(shù)關(guān)系式;
(3)如果加油站距景點200km,車速為80km/h,要到達(dá)目的地,油箱中的油是否夠用?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=-2x+2分別與x軸、y軸交于A、B兩點,以線段AB為直角邊在第一象限內(nèi)作Rt△ABC,∠BAC=90°.
(1)求點A、B坐標(biāo);
(2)若AC=
1
2
AB,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直線y=
1
2
x+5
與x軸,y軸分別交于A,B兩點,點M為直線AB上一個動點,點N在x軸上方的坐標(biāo)平面內(nèi),若以M,N,O,B為頂點的四邊形是菱形,則N的坐標(biāo)為______.

查看答案和解析>>

同步練習(xí)冊答案