精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點D,交AB于點H,AC的垂直平分線交BC于點E,交AC于點G,連接AD,AE,則下列結論錯誤的是(
A. =
B.AD,AE將∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

【答案】A
【解析】解:∵∠B=∠C=36°, ∴AB=AC,∠BAC=108°,
∵DH垂直平分AB,EG垂直平分AC,
∴DB=DA,EA=EC,
∴∠B=∠DAB=∠C=∠CAE=36°,
∴△BDA∽△BAC,
,
又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°,
∴∠ADC=∠DAC,
∴CD=CA=BA,
∴BD=BC﹣CD=BC﹣AB,
= ,即 = ,故A錯誤;
∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,
∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°,
即∠DAB=∠DAE=∠CAE=36°,
∴AD,AE將∠BAC三等分,故B正確;
∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,
∴∠BAE=∠CAD,
在△BAE和△CAD中,

∴△BAE≌△CAD,故C正確;
由△BAE≌△CAD可得SBAE=SCAD , 即SBAD+SADE=SCAE+SADE ,
∴SBAD=SCAE ,
又∵DH垂直平分AB,EG垂直平分AC,
∴SADH= SABD , SCEG= SCAE ,
∴SADH=SCEG , 故D正確.
故選:A.
由題意知AB=AC、∠BAC=108°,根據中垂線性質得∠B=∠DAB=∠C=∠CAE=36°,從而知△BDA∽△BAC,得 ,由∠ADC=∠DAC=72°得CD=CA=BA,進而根據黃金分割定義知 ,可判斷A;根據∠DAB=∠CAE=36°知∠DAE=36°可判斷B;根據∠BAD+∠DAE=∠CAE+∠DAE=72°可得∠BAE=∠CAD,可證△BAE≌△CAD,即可判斷C;由△BAE≌△CAD知SBAD=SCAE , 根據DH垂直平分AB,EG垂直平分AC可得SADH=SCEG , 可判斷D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ADBC,AE平分BAC,B=70°C=30°.求:

1BAE的度數;

2DAE的度數;

3探究:小明認為如果條件B=70°C=30°改成B-C=40°,也能得出DAE的度數?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(0,2),AOB為等邊三角形,P是x軸上一個動點(不與原O重合),以線段AP為一邊在其右側作等邊三角形APQ.

(1)求點B的坐標;

(2)在點P的運動過程中,ABQ的大小是否發(fā)生改變?如不改變,求出其大。蝗绺淖,請說明理由.

(3)連接OQ,當OQAB時,求P點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面一段:

計算

觀察發(fā)現,上式從第二項起,每項都是它前面一項的倍,如果將上式各項都乘以,所得新算式中除個別項外,其余與原式中的項相同,于是兩式相減將使差易于計算.

解:設,

,

-①得,則

上面計算用的方法稱為錯位相減法,如果一列數,從第二項起每一項與前一項之比都相等(本例中是都等于),那么這列數的求和問題,均可用上述錯位相減法來解決.

下面請你觀察算式是否具備上述規(guī)律?若是,請你嘗試用錯位相減法計算上式的結果.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市計劃在“十周年”慶典當天開展購物抽獎活動,凡當天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉盤平均分成四個扇形,分別標上1,2,3,4四個數字,抽獎者連續(xù)轉動轉盤兩次,當每次轉盤停止后指針所指扇形內的數為每次所得的數(若指針指在分界線時重轉);當兩次所得數字之和為8時,返現金20元;當兩次所得數字之和為7時,返現金15元;當兩次所得數字之和為6時返現金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現的結果;
(2)某顧客參加一次抽獎,能獲得返還現金的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2-2(k-3)x+k2-4k-1=0.

(1)若這個方程有實數根,求k的取值范圍;

(2)若這個方程有一個根為1,求k的值;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】a,b互為相反數,c,d互為倒數,m的絕對值是1,n是有理數且既不是正數也不是負數,求20161a+b+m﹣(cd)2016+n(a+b+c+d)的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,射線的外部,為銳角)且平分平分

(1),求的度數;

(2)為銳角)不變,當的大小變化時,的度數是否變化?說明理由;

(3)(1)(2)的結果來看你能看出什么規(guī)律.

查看答案和解析>>

同步練習冊答案