【題目】如圖,四邊形ABCD中,ADBC,∠ADC=120°,P為直線CD上一動(dòng)點(diǎn),點(diǎn)M在線段BC上,連MP,設(shè)∠MPD=α

1)如圖1,若MPCD,則∠BMP=___度;

2)如圖2,當(dāng)P點(diǎn)在CD延長線上時(shí),∠BMP=___(用α表示);

3)如圖3,當(dāng)P點(diǎn)在DC延長線上時(shí),(2)中結(jié)論是否仍成立?請畫出圖形并證明你的判斷.

【答案】1150;(260°+α;(3)不成立.理由見解析.

【解析】

1)根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出∠C,然后利用三角形的內(nèi)角和定理求出∠CMP,再根據(jù)平角的定義列式計(jì)算即可得解;

2)根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出∠C,然后利用三角形的內(nèi)角和定理求出∠CMP,再根據(jù)平角的定義列式計(jì)算即可得解;

3)根據(jù)兩直線平行,同位角相等∠BCP,然后利用三角形的內(nèi)角和定理求出∠CMP,再根據(jù)平角的定義列式計(jì)算即可得解.

解:(1)∵ADBC,

∴∠C=180°-ADC=180°-120°=60°,

MPCD

∴∠CMP=90°-C=90°-60°=30°,

∴∠BMP=180°-CMP=180°-30°=150°;

2)∵ADBC,

∴∠C=180°-ADC=180°-120°=60°

在△CMP中,∠CMP=180°-C-MPD=180°-60°-α=120°-α,

∴∠BMP=180°-CMP=180°-120°-α=60°+α

3)不成立.

理由如下:∵ADBC,

∴∠BCP=ADC=120°

在△CMP中,∠CMP=180°-BCP-MPD=180°-120°-α=60°-α

∴∠BMP=180°-CMP=180°-60°-α=120°+α

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,ABCDEC關(guān)于點(diǎn)C成中心對稱,連接AE、BD.

(1)線段AE、BD具有怎樣的位置關(guān)系和大小關(guān)系?說明你的理由.

(2)如果ABC的面積為5cm2 , 求四邊形ABDE的面積.

(3)當(dāng)∠ACB為多少度時(shí),四邊形ABDE為矩形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點(diǎn)EF分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=ADB+D=180°,點(diǎn)EF分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時(shí),仍有EF=BE+FD請證明你的結(jié)論.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,ADC=120°,BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC,AD,AB于點(diǎn)E,O,F(xiàn),則圖中全等三角形的對數(shù)是(

A.1對
B.2對
C.3對
D.4對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,CD是⊙O的兩條互相垂直的直徑,點(diǎn)O1 , O2 , O3 , O4分別是OA、OB、OC、OD的中點(diǎn),若⊙O的半徑為2,則陰影部分的面積為(
A.8
B.4
C.4π+4
D.4π﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)為了了解孩子們對《中國詩詞大會》、《挑戰(zhàn)不可能》、《最強(qiáng)大腦》、《超級演說家》、《地理中國》五種電視節(jié)目的喜愛程度,隨機(jī)在七、八、九年級抽取了部分學(xué)生進(jìn)行調(diào)查每人只能選擇一種喜愛的電視節(jié)目),并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題

(1)本次調(diào)查中共抽取了   名學(xué)生

(2)補(bǔ)全條形統(tǒng)計(jì)圖

(3)在扇形統(tǒng)計(jì)圖中,喜愛《地理中國》節(jié)目的人數(shù)所在的扇形的圓心角是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若把邊長為1的正方形ABCD的四個(gè)角(陰影部分)剪掉,得一四邊形A1B1C1D1 . 試問怎樣剪,才能使剩下的圖形仍為正方形,且剩下圖形的面積為原來正方形面積的 ,請說明理由.(寫出證明及計(jì)算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過A、B、C三點(diǎn)作拋物線.

(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)E是AC延長線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班在一次班會課上,就遇見路人摔倒后如何處理的主題進(jìn)行討論,并對全班 50 名學(xué)生的處理方式進(jìn)行統(tǒng)計(jì),得出相關(guān)統(tǒng)計(jì)表和統(tǒng)計(jì)圖.

組別

A

B

C

D

處理方式

迅速離開

馬上救助

視情況而定

只看熱鬧

人數(shù)

m

30

n

5

請根據(jù)表圖所提供的信息回答下列問題:

(1)統(tǒng)計(jì)表中的 m= ,n=

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若該校有 2000 名學(xué)生,請據(jù)此估計(jì)該校學(xué)生采取馬上救助方式的學(xué)生有多少人?

查看答案和解析>>

同步練習(xí)冊答案