【題目】(2016山西省第19題)請閱讀下列材料,并完成相應的任務:

阿基米德折弦定理

阿基米德(Archimedes,公元前287~公元212年,古希臘)是有史以來最偉大的數(shù)學家之一.他與牛頓、高斯并稱為三大數(shù)學王子.

阿拉伯Al-Biruni(973年~1050年)的譯文中保存了阿基米德折弦定理的內容,蘇聯(lián)在1964年根據(jù)Al-Biruni譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德的折弦定理.

阿基米德折弦定理:如圖1,AB和BC是的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.

下面是運用截長法證明CD=AB+BD的部分證明過程.

證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.M是的中點, MA=MC ...

任務:(1)請按照上面的證明思路,寫出該證明的剩余部分;

(2)填空:如圖(3),已知等邊ABC內接于,AB=2,D為上一點, ,AEBD與點E,則BDC的長是

【答案】(1)、證明過程見解析;(2)、2+2

【解析】

試題分析:(1)、已截取CG=AB 只需證明BD=DG,且MDBC,所以需證明MB=MG,故證明MBA≌△MGC即可;(2)、AB=2,利用三角函數(shù)可得BE=,由阿基米德折弦定理可得BE=DE+DC,則BDC周長=BC+CD+BD=BC+DC+DE+BE=BC+(DC+DE)+BE=BC+BE+BE=BC+2BE,然后代入計算可得答案

試題解析:(1)、又 MBA≌△MGC. MB=MG.

MDBC,BD=GD. CD=CG+GD=AB+BD.

(2)、

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學校為了獎勵初三優(yōu)秀畢業(yè)生,計劃購買一批平板電腦和一批學習機經(jīng)投標,購買1臺平板電腦3 000,購買1臺學習機800.

(1)學校根據(jù)實際情況決定購買平板電腦和學習機共100,要求購買的總費用不超過168 000,則購買平板電腦最多多少臺?

(2)(1)的條件下,購買學習機的臺數(shù)不超過平板電腦臺數(shù)的1.7.請問有哪幾種購買方案?哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016云南省第23題)有一列按一定順序和規(guī)律排列的數(shù):

第一個數(shù)是

第二個數(shù)是;

第三個數(shù)是;

對任何正整數(shù)n,第n個數(shù)與第(n+1)個數(shù)的和等于

(1)經(jīng)過探究,我們發(fā)現(xiàn):

設這列數(shù)的第5個數(shù)為a,那么,,,哪個正確?

請你直接寫出正確的結論;

(2)請你觀察第1個數(shù)、第2個數(shù)、第3個數(shù),猜想這列數(shù)的第n個數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個數(shù)與第(n+1)個數(shù)的和等于”;

(3)設M表示,,…,,這2016個數(shù)的和,即

求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,在四邊形ABCD中,AB=ADB=D=90°,EF分別是邊BC、CD上的點,且EAF=BAD求證:EF=BE+FD;

2)如圖,在四邊形ABCD中,AB=AD,B+D=180°E、F分別是邊BCCD上的點,且EAF=BAD,(1)中的結論是否仍然成立?

3)如圖,在四邊形ABCD中,AB=AD,B+ADC=180°,E、F分別是邊BCCD延長線上的點,且EAF=BAD,(1)中的結論是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果線段a4厘米,c9厘米,那么線段a、c的比例中項b_____厘米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列兩個三位數(shù)的特點,猜想其中積的結果最大的是( 。
A.901×999
B.922×978
C.950×950
D.961×939

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形的四邊長順次為a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,則此四邊形一定是( )
A.平行四邊形
B.矩形
C.菱形
D.正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016湖南省岳陽市第20題)我市某學校開展遠是君山,磨礪意志,保護江豚,愛鳥護鳥為主題的遠足活動.已知學校與君山島相距24千米,遠足服務人員騎自行車,學生步行,服務人員騎自行車的平均速度是學生步行平均速度的2.5倍,服務人員與學生同時從學校出發(fā),到達君山島時,服務人員所花時間比學生少用了3.6小時,求學生步行的平均速度是多少千米/小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從家出發(fā)(記為原點0)向東走3m,他把數(shù)軸上+3的位置記

為點A,他又東走了5m,記為點B,點B表示什么數(shù)?接著他又向西走了10m到點C,點C表示什么數(shù)?請你畫出數(shù)軸,并在數(shù)軸上標出點A、點B的位置,這時如果小明要回家,則小明應如何走?

查看答案和解析>>

同步練習冊答案