【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內角∠ABC、外角∠ACF.以下結論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正確的結論有__________(填序號)
【答案】①②③⑤
【解析】
根據(jù)角平分線定義得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根據(jù)三角形的內角和定理得出∠BAC+∠ABC+∠ACB=180°,根據(jù)三角形外角性質得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根據(jù)已知結論逐步推理,即可判斷各項.
∵AD平分∠EAC,
∴∠EAC=2∠EAD,
∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,∴①正確;
∵AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,∠ABC=∠ACB,
∴∠ABC=∠ACB=2∠DBC,
∴∠ACB=2∠ADB,∴②正確;
∵AD平分∠EAC,CD平分∠ACF,
∴∠DAC=∠EAC,∠DCA=∠ACF,
∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,
∴∠ADC=180°(∠DAC+∠ACD)=180° (∠EAC+∠ACF)=180° (∠ABC+∠ACB+∠ABC+∠BAC)=180° (180°∠ABC)=90°∠ABC,∴③正確;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,∠ADC=90°∠ABC,
∴∠ADB不等于∠CDB,∴④錯誤;
∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,
∴∠BAC=2∠BDC,∴⑤正確;
故答案為:①②③⑤
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知□ABCD,AB//x軸,AB=6,點A的坐標為(1,-4),點D的坐標為(-3,4),點B在第四象限,點P是□ABCD邊上的一個動點.
(1)若點P在邊BC上,PD=CD,求點P的坐標.
(2)若點P在邊AB,AD上,點P關于坐標軸對稱的點Q落在直線y=x-1上,求點P的坐標.
(3)若點P在邊AB,AD,CD上,點G是AD與y軸的交點,如圖2,過點P作y軸的平行線PM,過點G作x軸的平行線GM,它們相交于點M,將△PGM沿直線PG翻折,當點M的對應點落在坐標軸上時,求點P的坐標(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,sinB=,
(1)求邊BC的長;
(2)將△ABC繞著點C旋轉得△A′B′C,點A的對應點A′,點B的對應點B′.如果點A′在BC邊上,那么點B和點B′之間的距離等于多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖是一個長為,寬為的長方形,沿圖中虛線剪開分成四塊小長方形,然后按圖的形狀拼成一個正方形.()
(1)圖2的陰影部分的正方形的邊長是____.
(2)用兩種不同的方法求圖中陰影部分的面積.
(方法)陰影=____________________;
(方法)陰影=____________________;
(3)利用(方法)(方法)中兩個代數(shù)式之間存在的等量關系,解決問題:若,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,E為BC上一點,連接AE與OC交于點D,∠CAE=∠CBA.
(1)求證:AE⊥OC;
(2)若⊙O的半徑為5,AE的長為6,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內的圖象上的兩點,且A,B兩點的橫坐標分別是2和4,則△OAB的面積是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.5倍,這樣可提前4年完成任務.
(1)問實際每年綠化面積多少萬平方米?
(2)為加大創(chuàng)城力度,市政府決定從2017年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中華文化源遠流長,在文學方面,《西游記》《三國演義》《水滸傳》《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中抽取n名學生進行調查.根據(jù)調查結果繪制成如圖所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:
(1)求n的值;
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校共有2000名學生,請估計該校四大古典名著均已讀完的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是邊BC上的中線,∠BAD=∠CAD,CE∥AD,CE交BA的延長線于點E,BC=8,AD=3.
(1)求CE的長;
(2)求證:△ABC為等腰三角形.
(3)求△ABC的外接圓圓心P與內切圓圓心Q之間的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com