精英家教網 > 初中數學 > 題目詳情

如圖,在平面直角坐標系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物
經過A、C兩點.
(1)求拋物線的解析式及其頂點坐標;
(2)如圖①,點P是拋物線上位于x軸下方的一點,點Q與點P關于拋物線的對稱軸對稱,過點P、Q分別向x軸作垂線,垂足為點D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時點P的坐標;
(3)如圖②,點M是拋物線上位于直線AC下方的一點,過點M作MF⊥AC于點F,連接MC,作MN∥BC交直線AC于點N,若MN將△MFC的面積分成2:3兩部分,請確定M點的坐標.

(1),(1,);(2)(0,)或(2,);(3).

解析試題分析:(1)根據曲線上點的坐標與方程的關系,將A(,0)C(4,5)代入得方程組,解之即可得拋物線的解析式;化為頂點式即可得頂點坐標.
(2)點P為,分,把矩形DPQE的周長表示為的二次函數,應用二次函數最值原理求解即可.
(3)分兩種情況討論即可.
(1)由已知得:A(,0)、C(4,5),
∵二次函數的圖像經過點A(-1,0)C(4,5),
 , 解得.
∴拋物線解析式為.
,∴頂點坐標為(1,).
(2)如答圖①,由(1)知拋物線的對稱軸為直線x=1,
設點P為,
∵P、Q為拋物線上的對稱點,∴.
時,,
,∴當t=2使,d有最大值為10,即點P為(2,
時,由拋物線的軸對稱性得,點P為(0,)時,d有最大值10
綜上所述,當P為(0,)或(2,)時,d有最大值10  
(3)如答圖②,過點F作FH⊥MN于H,過C作CG⊥MN于G,則∠ANM=∠ACB=45°.
∵MF⊥AC,∴ . ∴.
∵A(,0),C(4,5),∴直線AC解析式為y=x+1.
設點M為,則CG=4-m.
由MN∥BC得點N為(m,m+1),
.
時,有3MN="4CG" ,即,
解得:(舍去).
∴點M為.    
時,有MN=3CG, 即,
解得:(舍去).
∴點M為.
綜上所述,當M為時,MN將△MFC的面積分成2:3兩部分.       

考點:1.二次函數綜合題;2.曲線上點的坐標與方程的關系;3.二次函數的性質;4.解一元二次方程;5.分類思想的應用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖1,拋物線軸交于兩點,與軸交于點,連結AC,若
(1)求拋物線的解析式;
(2)拋物線對稱軸上有一動點P,當時,求出點的坐標;
(3)如圖2所示,連結,是線段上(不與重合)的一個動點.過點作直線,交拋物線于點,連結、,設點的橫坐標為.當t為何值時,的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖①,在□ABCD中,對角線AC⊥AB,BC=10,tan∠B=2.點E是BC邊上的動點,過點E作EF⊥BC于點E,交折線AB-AD于點F,以EF為邊在其右側作正方形EFGH,使EH邊落在射線BC上.點E從點B出發(fā),以每秒1個單位的速度在BC邊上運動,當點E與點C重合時,點E停止運動,設點E的運動時間為t()秒.
(1)□ABCD的面積為          ;當t=      秒時,點F與點A重合;
(2)點E在運動過程中,連接正方形EFGH的對角線EG,得△EHG,設△EHG與△ABC的重疊部分面積為S,請直接寫出S與t的函數關系式以及對應的自變量t的取值范圍;
(3)作點B關于點A的對稱點Bˊ,連接CBˊ交AD邊于點M(如圖②),當點F在AD邊上時,EF與對角線AC交于點N,連接MN得△MNC.是否存在時間t,使△MNC為等腰三角形?若存在,請求出使△MNC為等腰三角形的時間t;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知拋物線
(1)若求該拋物線與x軸的交點坐標;
(2)若 ,證明拋物線與x軸有兩個交點;
(3)若且拋物線在區(qū)間上的最小值是-3,求b的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在直角坐標平面內,O為原點,拋物線經過點A(6,0),且頂點B(m,6)在直線上.
(1)求m的值和拋物線的解析式;
(2)如在線段OB上有一點C,滿足,在x軸上有一點D(10,0),連接DC,且直線DC與y軸交于點E.
①求直線DC的解析式;
②如點M是直線DC上的一個動點,在x軸上方的平面內有另一點N,且以O、E、M、N為頂點的四邊形是菱形,請直接寫出點N的坐標.
 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖1,把邊長分別是為4和2的兩個正方形紙片OABC和OD′E′F′疊放在一起.
(1)操作1:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數量關系?試證明你的結論;
(2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個單位的速度平移,平移后的正方形ODEF設為正方形PQMN,如圖3,設正方形PQMN移動的時間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫出y與x之間的函數解析式;
(3)操作3:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉90°得到正方形OHKL,如圖4,求△ACK的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖(1),直線與x軸交于點A、與y軸交于點D,以AD為腰,以x軸為底作等腰梯形ABCD(AB>CD),且等腰梯形的面積是8,拋物線經過等腰梯形的四個頂點.

圖(1)
(1) 求拋物線的解析式;
(2) 如圖(2)若點P為BC上的—個動點(與B、C不重合),以P為圓心,BP長為半徑作圓,與軸的另一個交點為E,作EF⊥AD,垂足為F,請判斷EF與⊙P的位置關系,并給以證明;

圖(2)
(3) 在(2)的條件下,是否存在點P,使⊙P與y軸相切,如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,某種新型導彈從地面發(fā)射點L處發(fā)射,在初始豎直加速飛行階段,導彈上升的高度y(km)與飛行時間x(s)之間的關系式為y=x2x(0≤x≤10).發(fā)射3 s后,導彈到達A點,此時位于與L同一水面的R處雷達站測得AR的距離是2 km,再過3 s后,導彈到達B點.

(1)求發(fā)射點L與雷達站R之間的距離;
(2)當導彈到達B點時,求雷達站測得的仰角(即∠BRL)的正切值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,直角坐標系中Rt△ABO,其頂點為A(0, 1)、B(2, 0)、O(0, 0),將此三角板繞原點O逆時針旋轉90°,得到Rt△A′B′O.

(1)一拋物線經過點A′、B′、B,求該拋物線的解析式;
(2)設點P是在第一象限內拋物線上的一動點,是否存在點P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請求出P的坐標;若不存在,請說明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質.

查看答案和解析>>

同步練習冊答案