已知二次函數(shù)y=-x2+4x+5,完成下列各題:
(1)將函數(shù)關(guān)系式用配方法化為y=a(x+h)2+k的形式,并寫出它的頂點坐標(biāo)、對稱軸.
(2)求出它的圖象與坐標(biāo)軸的交點坐標(biāo).
(3)在直角坐標(biāo)系中,畫出它的圖象.
(4)根據(jù)圖象說明:當(dāng)x為何值時,y>0;當(dāng)x為何值時,y<0.
分析:(1)用配方法整理,進(jìn)而得出頂點坐標(biāo)和對稱軸即可;
(2)讓函數(shù)值為0,求得一元二次方程的兩個解即為這個二次函數(shù)的圖象與坐標(biāo)軸的交點的橫坐標(biāo),讓x=0,可求得拋物線與y軸的交點坐標(biāo);找到與y軸的交點,x軸的交點,對稱軸,即可畫出大致圖象;
(3)由(1)和(2)中的條件即可畫出它的圖象;
(4)分別找到x軸上方和下方函數(shù)圖象所對應(yīng)的自變量的取值即可.
解答:解:(1)y=-x2+4x+5=-(x2-4x+4)+9=-(x-2)2+9;
故它的頂點坐標(biāo)為(2,9)、對稱軸為:x=2;

(2)圖象與x軸相交是y=0,則:
0=-(x-2)2+9,
解得x1=5,x2=-1,
∴這個二次函數(shù)的圖象與x軸的交點坐標(biāo)為(5,0),(-1,0);
當(dāng)x=0時,y=5,
∴與y軸的交點坐標(biāo)為(0,5);

(3)畫出大致圖象為:
;

4)-1<x<5時 y>0;x<-1或x>5時  y<0.
點評:此題主要考查了二次函數(shù)的圖象,用到的知識點為:拋物線與x軸的交點的縱坐標(biāo)為0,與y軸交點的橫坐標(biāo)為0;函數(shù)值大于0,相對應(yīng)的自變量的取值是x軸上方函數(shù)圖象所對應(yīng)的
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象過點A(1,2),B(3,2),C(0,-1),D(2,3).點P(x1,y1),Q(x2,y2)也在該函數(shù)的圖象上,當(dāng)0<x1<1,2<x2<3時,y1與y2的大小關(guān)系正確的是(  )
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象經(jīng)過點(0,3),頂點坐標(biāo)為(1,4),
(1)求這個二次函數(shù)的解析式;
(2)求圖象與x軸交點A、B兩點的坐標(biāo);
(3)圖象與y軸交點為點C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莒南縣二模)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).
其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;
③當(dāng)x<0時,y<0;④方程ax2+bx+c=0(a≠0)有兩個大于-1的實數(shù)根;⑤2a+b=0.其中,正確的說法有
②④⑤
②④⑤
.(請寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,已知A點坐標(biāo)為(-1,0),且對稱軸為直線x=2,則B點坐標(biāo)為
(5,0)
(5,0)

查看答案和解析>>

同步練習(xí)冊答案