【題目】如圖,已知中,,,,點(diǎn)在邊上,以為圓心,為半徑的弧經(jīng)過(guò)點(diǎn)是弧上一個(gè)動(dòng)點(diǎn).
求半徑的長(zhǎng);
如果點(diǎn)是弧的中點(diǎn),聯(lián)結(jié),求的正切值;
如果平分,延長(zhǎng)交于點(diǎn),求線段的長(zhǎng).
【答案】(1)9;(2);(3)
【解析】
(1)根據(jù)勾股定理得到AB= =12,如圖1,過(guò)O作OH⊥AB于H,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(2)如圖2,連接OP交AB于H,根據(jù)垂徑定理得到OP⊥AB,AH=BH=AB=6,得到PH=9-3=6,根據(jù)圓周角定理得到∠PCB=∠PBA,根據(jù)三角函數(shù)的定義即可得到結(jié)論;
(3)如圖3,過(guò)A作AE⊥BD于E,連接CP,根據(jù)角平分線的性質(zhì)得到AE=AC=4,根據(jù)相似三角形的性質(zhì)得到AD=,根據(jù)全等三角形的性質(zhì)得到BE=BC=16,根據(jù)勾股定理和三角形的面積公式即可得到結(jié)論.
解:)∵Rt△ABC中,∠ACB=90°,AC=4,BC=16,
∴AB==12,
如圖1,過(guò)O作OH⊥AB于H,
則BH=AB=6,
∵∠BHO=∠ACB=90°,∠B=∠B,
∴△BHO∽△BCA,
∴
∴
∴OB=9;
(2) 如圖2,連接OP交AB于H,連結(jié),交于點(diǎn),
是弧的中點(diǎn),過(guò)圓心
, AH=BH=AB=6,
在Rt△BHO中,OH== =3,
∴PH=9-3=6,
∵點(diǎn)P是弧AB的中點(diǎn),
∴弧AP=弧PB,
∴∠PCB=∠PBA,
∴∠PCB的正切值=∠PBA的正切值== ;
如圖3,過(guò)A作AE⊥BD于E,連接CP,
∵BA平分∠PBC,AC⊥BC,
∴AE=AC=4 ,
∵∠AED=∠ACB=90°,∠D=∠D,
∴△ADE∽△BDC,
∴,
設(shè)DE=x,
∴,
∴AD=
在Rt△ACB與Rt△AEB中,
∴Rt△ACB≌Rt△AEB(HL),
∴BE=BC=16,
∵CD2+BC2=BD2,
∴(4+)2+162=(16+x)2,
解得:x=
∴AD=,BD=16+=,
∴CD=
∵BC是⊙的直徑,
∴CP⊥BD,
∴CP== =
∴PD= =
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,G為⊙O上一點(diǎn),連接AG交CD于K,在CD的延長(zhǎng)線上取一點(diǎn)E,使EG=EK,EG的延長(zhǎng)線交AB的延長(zhǎng)線于F.
(1)求證:EF是⊙O的切線;
(2)連接DG,若AC∥EF時(shí).
①求證:△KGD∽△KEG;
②若cosC=,AK=,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形AOBC的頂點(diǎn)坐標(biāo)分別為A(0,3),O(0,0),B(4,0),C(4,3),動(dòng)點(diǎn)F在邊BC上(不與B.C重合),過(guò)點(diǎn)F的反比例函數(shù)y=的圖象與邊AC交于點(diǎn)E,直線EF分別與y軸和x軸相交于點(diǎn)D和G.給出下列命題:①若k=4,則△OEF的面積為;②若k=,則點(diǎn)C關(guān)于直線EF的對(duì)稱點(diǎn)在x軸上;③滿足題設(shè)的k的取值范圍是0<k≤12;④若DEEG=,則k=1.其中正確的命題的序號(hào)是____________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了安全,交通部門一再提醒司機(jī):請(qǐng)勿超速!同時(shí),進(jìn)一步完善各類監(jiān)測(cè)系統(tǒng),如圖,在松銅公路某直線路段MN內(nèi)限速60千米/小時(shí),為了檢測(cè)車輛是否超速,在公路MN旁設(shè)立了測(cè)速點(diǎn)C,從測(cè)速點(diǎn)C測(cè)得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了3秒鐘,已知∠CAN=45°,∠CBN=60°,BC=120米.
(1)求測(cè)速點(diǎn)C到該段公路的距離;
(2)請(qǐng)你通過(guò)計(jì)算判斷此車是否超速,(結(jié)果精確到0.1m/s)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖象與正比例函數(shù)圖象交于點(diǎn),且點(diǎn)的橫坐標(biāo)為2.
(1)求反比例函數(shù)的表達(dá)式;
(2)若射線上有一點(diǎn),且,過(guò)點(diǎn)作與軸垂直,垂足為,交反比例函數(shù)圖象于點(diǎn),連接,,請(qǐng)求出的面積.
(3)定義:橫縱坐標(biāo)均為整數(shù)的點(diǎn)稱為“整點(diǎn)”.在(2)的條件下,請(qǐng)?zhí)骄窟?/span>,與反比例函數(shù)圖象圍成的區(qū)域內(nèi)(不包括邊界)“整點(diǎn)”的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條直線與反比例函數(shù)的圖像交于、兩點(diǎn),與軸交于點(diǎn),軸,垂足為.
(1)如圖甲,求反比例函數(shù)的解析式與點(diǎn)的坐標(biāo);
(2)如圖乙,若點(diǎn)在線段上運(yùn)動(dòng),連接,作,交于點(diǎn).試說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某建設(shè)工地一個(gè)工程有大量的沙石需要運(yùn)輸.建設(shè)公司車隊(duì)有載重量為8噸和10噸的卡車共12輛,全部車輛一次能運(yùn)輸110噸沙石
(1)求建設(shè)公司車隊(duì)載重量為8噸和10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,車隊(duì)需要一次運(yùn)輸沙石超過(guò)160噸,為了完成任務(wù),準(zhǔn)備新增購(gòu)這兩種卡車共6輛,車隊(duì)最多新購(gòu)買載重量為8噸的卡車多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)試銷一種成本為元/件的T 恤,規(guī)定試銷期間單價(jià)不低于成本單價(jià),又獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元/件)符合一次函數(shù),且時(shí),;時(shí),.
(1)寫(xiě)出銷售單價(jià)的取值范圍;
(2)求出一次函數(shù)的解析式;
(3)若該商場(chǎng)獲得利潤(rùn)為元,試寫(xiě)出利潤(rùn)與銷售單價(jià)之間的關(guān)系式,銷售單價(jià)定為多少時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線y=﹣x+4交x軸于點(diǎn)C,交y軸于點(diǎn)A,過(guò)A、C兩點(diǎn)的拋物線y=ax2+bx+4交x軸負(fù)半軸于點(diǎn)B,且tan∠BAO=.
(1)求拋物線的解析式;
(2)已知E、F是線段AC上異于A、C的兩個(gè)點(diǎn),且AE<AF,EF=2,D為拋物線上第一象限內(nèi)一點(diǎn),且DE=DF,設(shè)點(diǎn)D的橫坐標(biāo)為m,△DEF的面積為S,求S與m的函數(shù)關(guān)系式(不要求寫(xiě)出自變量m的取值范圍);
(3)在(2)的條件下,當(dāng)∠EDF=90°時(shí),連接BD,P為拋物線上一動(dòng)點(diǎn),過(guò)P作PQ⊥BD交線段BD于點(diǎn)Q,連接EQ.設(shè)點(diǎn)P的橫坐標(biāo)為t,求t為何值時(shí),PE=QE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com