如圖所示,在直角坐標系中,點A是反比例函數(shù)y1=
k
x
(x>0)
的圖象上一點,AB⊥x軸的正半軸于B點,C是OB的中點;一次函數(shù)y2=ax+b的圖象經(jīng)過A、C兩點,并交y軸于點D(0,-2),若S△AOD=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)觀察圖象,請指出,當y1≥y2時,x的取值范圍.
(1)作AE⊥y軸于E,
∵S△AOD=4,OD=2,
1
2
OD•AE=4,
∴AE=4,
∵AB⊥OB,C為OB的中點,
∴∠DOC=∠ABC=90°,OC=BC,∠OCD=∠BCA,
∴Rt△DOC≌Rt△ABC,
∴AB=OD=2,
∴A(4,2),
將A(4,2)代入y1=
k
x
中,得k=8,
∴反比例函數(shù)的解析式為:y1=
8
x

將A(4,2)和D(0,-2)代入y2=ax+b,
4a+b=2
b=-2
,
解得:
a=1
b=-2

∴一次函數(shù)的解析式為:y2=x-2;

(2)根據(jù)圖象只有在y軸的右側(cè)的情況:
此時當y1≥y2時,0<x≤4.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=
k
x
的圖象交于M、N兩點.
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;
(3)設直線與x軸交于點A,連接OM、ON,求三角形OMN的面積;
(4)在平面直角坐標系中是否存在一點P,使以P,A,O,N為頂點的四邊形為
平行四邊形?若存在,請直接寫出點P的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知反比例函數(shù)y=
12
x
的圖象與一次函數(shù)y=kx+4的圖象相交于P、Q兩點,并且P點的縱坐標是6.
(1)求這個一次函數(shù)的解析式;(2)求△POQ的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,反比例函數(shù)y=
k
x
(k<0)的圖象經(jīng)過點A(-
3
,m),過A作AB⊥x軸于點B,△AOB的面積為
3
.?
(1)求k和m的值;?
(2)若過A點的直線y=ax+b與x軸交于C點,且∠ACO=30°,求此直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,直線l1:x=1,l2:x=2,l3:x=3,l4:x=4,…,與函數(shù)y=
2
x
(x>0)的圖象分別交于點A1、A2、A3、A4、…;與函數(shù)y=
5
x
(x>0)
的圖象分別交于點B1、B2、B3、B4、….如果四邊形A1A2B2B1的面積記為S1,四邊形A2A3B3B2的面積記為S2,四邊形A3A4B4B3的面積記為S3,…,以此類推.則S10的值是( 。
A.
19
60
B.
23
88
C.
25
104
D.
63
220

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

直線y=-2x+5分別與x軸,y軸交于點C、D,與反比例函數(shù)y=
3
x
的圖象交于點A、B.過點A作AE⊥y軸于點E,過點B作BF⊥x軸于點F,連接EF,下列結(jié)論:①AD=BC;②EFAB;③四邊形AEFC是平行四邊形;④S△AOD=S△BOC.其中正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

兩個反比例函數(shù)y=
k
x
y=
1
x
在第一象限內(nèi)的圖象如圖所示,點P在y=
k
x
的圖象上,PC⊥x軸于點C,交y=
1
x
的圖象于點A,PD⊥y軸于點D,交y=
1
x
的圖象于點B,當點P在y=
k
x
的圖象上運動時,以下結(jié)論:①△ODB與△OCA的面積相等;②四邊形PAOB的面積不會發(fā)生變化;③PA與PB始終相等;④當點A是PC的中點時,點B一定是PD的中點.其中一定正確的是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=2x-6與反比例函數(shù)y=
k
x
(x>0)
的圖象交于點A(4,2),與x軸交于點B.
(1)求k的值及點B的坐標;
(2)在x軸上是否存在點C,使得AC=AB?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知矩形的面積為20,則它的長y與寬x之間的關系用圖象表示大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案