如圖,P是⊙O外一點(diǎn),割線POB與⊙O相交于A、B,切線PC與⊙O相切于C,若PA=2,PC=3,求⊙O的半徑.
設(shè)圓半徑為r 由切割線定理,
得 PC2=PA•PB,
∴32=2(2+2r),
解得 r=
5
4
,
∴⊙O 的半徑為
5
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是一條弦,連接OC并延長(zhǎng)至點(diǎn)P,使PC=BC,∠BOC=60°.
(1)求證:PB是⊙O的切線;
(2)若⊙O的半徑為1,且AB、PB的長(zhǎng)是方程x2+bx+c=0的兩根,求b、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,⊙O的割線PAB交⊙O于點(diǎn)A,B,PA=14cm,AB=10cm,PO=20cm,則⊙O的半徑是(  )
A.8cmB.10cmC.12cmD.14cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
甲:如圖,△ABC中,AB=AC,以AB為直徑作⊙O,與BC交于點(diǎn)D,過(guò)D作AC的垂線,垂足為E.
證明:(1)BD=DC;(2)DE是⊙O的切線.

乙:已知關(guān)于x的一元二次方程mx2-(2m-1)x+m-2=0(m>0).
(1)證明:這個(gè)方程有兩個(gè)不相等的實(shí)根
(2)如果這個(gè)方程的兩根分別為x1,x2,且(x1-5)(x2-5)=5m,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:AB是⊙O的直徑,AD是弦,∠DAB=22.5°,延長(zhǎng)AB到點(diǎn)C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線;
(2)若AB=2
2
,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,等邊△ABC的周長(zhǎng)為6π,半徑是1的⊙O從與AB相切于點(diǎn)D的位置出發(fā),在△ABC外部按順時(shí)針?lè)较蜓厝切螡L動(dòng),又回到與AB相切于點(diǎn)D的位置,則⊙O自轉(zhuǎn)了( 。
A.2周B.3周C.4周D.5周

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)A、B、D在⊙O上,∠A=25°,OD的延長(zhǎng)線交直線BC于點(diǎn)C,且∠OCB=40°,直線BC與⊙O的位置關(guān)系為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,在△ABC中,BC=4,以點(diǎn)A為圓心,2為半徑的⊙A與BC相切于點(diǎn)D,交AB于點(diǎn)E,交AC于點(diǎn)F,且∠EAF=80°,則圖中陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,⊙O1與⊙O2外切于M點(diǎn),AF是兩圓的外公切線,A、B是切點(diǎn),DF經(jīng)過(guò)O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經(jīng)過(guò)M點(diǎn),連接AD.
(1)求證:ADBC;
(2)求證:MF2=AF•BF;
(3)如果⊙O1的直徑長(zhǎng)為8,tan∠ACB=
3
4
,求⊙O2的直徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案