精英家教網 > 初中數學 > 題目詳情

【題目】已知ACB中,∠C=90°,以點A為中心,分別將線段AB, AC 逆時針旋轉60°得到線段AD, AE,連接DE,延長DECB于點F.

(1)如圖1,若∠B=30°,∠CFE的度數為_________;

(2)如圖2,當30°<B<60°時,

①依題意補全圖2;

②猜想CFAC的數量關系,并加以證明.

【答案】(1) 120°;(2)①作圖見解析;②,證明見解析

【解析】

1)先求出∠BAC=60°,進而判斷出點E在邊AB上,得出ADE≌△ABCSAS),進而得出∠AED=ACB=90°最后用三角形的外角的性質即可得出結論;

2)①依題意補全圖形即可;

②先判斷出ADE≌△ABCSAS),進而得出∠AEF=90°,即可判斷出RtAEFRtACF,進而求出∠CAF=CAE=30°,即可得出結論.

解:(1)如圖1,在RtABC中,∠B=30°,

∴∠CAB=60°

由旋轉知,∠DAE=60°=CAB

∴點E在邊AB上,

AD=ABAE=AC,

∴△ADE≌△ABCSAS),

∴∠AED=ACB=90°,

∴∠CFE=B+BEF=30°+90°=120°,

故答案為120°

2)①依題意補全圖形如圖2所示,

②如圖2,連接AF,

∵∠BAD=CAE,

∴∠EAD=CAB,

AD=AB,AE=AC,

∴△ADE≌△ABCSAS),

∴∠AED=C=90°

∴∠AEF=90°,

Rt△AEFRt△ACF

∴∠EAF=CAF,

∴∠CAF=CAE=30°,

Rt△ACF中,CF=AF,且AC2+CF2=AF2

CF=AC

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,過點BBECD,垂足為E,連接AEFAE上一點,且∠BFE=∠C

1)試說明:△ABF∽△EAD;

2)若AB8BE6,AD9,求BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將△ABC繞點C順時針旋轉得到△DEC,使點A的對應點D恰好落在邊AB上,點B的對應點為E,連接BE

(Ⅰ)求證:∠A=∠EBC;

(Ⅱ)若已知旋轉角為50°,∠ACE130°,求∠CED和∠BDE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BCOB,點D上一動點,點ECD中點,連接BD分別交OCOE于點F,G

(1)求∠DGE的度數;

(2),求的值;

(3)記△CFB,△DGO的面積分別為S1S2,若k,求的值.(用含k的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線C1y=﹣x2+2x

(1)補全表格:

拋物線

頂點坐標

x軸交點坐標

y軸交點坐標

y=﹣x2+2x

(1,1)

   

   

(0,0)

(2)將拋物線C1向上平移3個單位得到拋物線C2,請畫出拋物線C1,C2,并直接回答:拋物線C2x軸的兩交點之間的距離是拋物線C1x軸的兩交點之間距離的多少倍

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)先化簡,再求值:其中,a是方程x2+3x+10的根.

2)已知拋物線yax2+bx+c的對稱軸為x2,且經過點(1,4)和(5,0),試求該拋物線的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)先化簡,再求值:其中,a是方程x2+3x+10的根.

2)已知拋物線yax2+bx+c的對稱軸為x2,且經過點(1,4)和(5,0),試求該拋物線的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,對稱軸為直線x=﹣1的拋物線yax2+bx+ca0)與x軸相交于A,B兩點,其中點A的坐標為(﹣3,0).

1)求點B的坐標;

2)已知a1,C為拋物線與y軸的交點:

若點P在拋物線上,且SPOC4SBOC,求點P的坐標;

在拋物線的對稱軸上找出一點Q,使BQ+CQ的值最小,并求出點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F連接AE、DE、DF.

(1)證明:∠E=C;

(2)若∠E=58°,求∠BDF的度數.

查看答案和解析>>

同步練習冊答案