【題目】下列說法:①已知直角三角形的面積為4,兩直角邊的比為1:2,則斜邊長為;②直角三角形的最大邊長為,最短邊長為1,則另一邊長為;③在△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC為直角三角形;④等腰三角形面積為12,底邊上的高為4,則腰長為5,其中正確結論的序號是( )
A. 只有①②③ B. 只有①②④ C. 只有③④ D. 只有②③④
【答案】D
【解析】
①已知直角三角形的面積為4,兩直角邊的比為1:2,設兩直角邊的長度分別為x,2x,由此即可求出兩直角邊分別為2、4,然后根據勾股定理可以求出斜邊,然后即可判斷;
②直角三角形的最大邊長為,最短邊長為1,根據勾股定理可以求出另一邊的長度,就可以判斷是否正確;
③在△ABC中,若∠A:∠B:∠C=1:5:6,根據三角形的內角和即可求出各個內角的度數,由此即可判斷;
④由于等腰三角形面積為12,底邊上的高為4,根據三角形的面積公式可以求出底邊,再根據勾股定理即可求出腰長,然后即可判斷是否正確.
①已知直角三角形的面積為4,兩直角邊的比為1:2,設兩直角邊的長度分別為x,2x,∴x2=4,∴兩直角邊分別為2、4,∴斜邊為2,所以選項錯誤;
②∵直角三角形的最大邊長為,最短邊長為1,∴根據勾股定理得第三邊為,故選項正確;
③在△ABC中,若∠A:∠B:∠C=1:5:6,∴∠A=15°,∠B=75°,∠C=90°,故選項正確;
④∵等腰三角形面積為12,底邊上的高為4,∴底邊=2×12÷4=6,底邊的一半為3,∴腰長=5,故選項正確.
故選:D.
科目:初中數學 來源: 題型:
【題目】將向右平移個單位長度,再向下平移個單位長度,得到
(1)在平面直角坐標系中,畫出;
(2)寫出平移后點的坐標:(_____,____).(_____,_____).(_____,_____);
(3)求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題
情景:
試根據圖中的信息,解答下列問題:
(1)購買6根跳繩需___________元,購買12根跳繩需_____________元.
(2)小紅比小明多買2根,付款時小紅反而比小明少5元,你認為有這種可能嗎?若有,請求出小紅購買跳繩的根數;若沒有,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.
(1)求甲種樹和乙種樹的單價;
(2)按學校規(guī)劃,準備購買甲、乙兩種樹共200棵,且甲種樹的數量不少于乙種樹的數量的,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文具商店銷售功能相同的A、B兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需156元;購買3個A品牌和1個B品牌的計算器共需122元.
(1)求這兩種品牌計算器的單價;
(2)學校開學前夕,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的八折銷售,B品牌計算器超出5個的部分按原價的七折銷售,設購買x個A品牌的計算器需要y1元,購買x(x>5)個B品牌的計算器需要y2元,分別求出y1、y2關于x的函數關系式;
(3)當需要購買50個計算器時,買哪種品牌的計算器更合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應點為點E),PE與CD相交于點O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結束】
25
【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數量是用75元購進B種套裝數量的2倍.
(1)求A,B兩種品牌套裝每套進價分別為多少元?
(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數量比購進A品牌的數量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com