【題目】矩形ABCD中,AB1,AD2,動點M、N分別從頂點A、B同時出發(fā),且分別沿著ADBA運動,點N的速度是點M2倍,點N到達頂點A時,則兩點同時停止運動,連接BM、CN交于點P,過點P分別作AB、AD的垂線,垂足分別為E、F,則線段EF的最小值為(  )

A.B.1C.D.

【答案】B

【解析】

BC的中點O,連接OA,OP,PA,可得OA,根據(jù)BN2t,AMt,CBN∽△ABM,得到∠CPB90°,在證明四邊形AEPF是矩形,即可解答

解:如圖,取BC的中點O,連接OA,OP,PA

∵四邊形ABCD是矩形,

∴∠BAD=∠ABC90°,BCAD2,

OBOC1,

OA,

BN2t,AMt,

2

∵∠CBN=∠BAM,

∴△CBN∽△ABM

∴∠ABM=∠BCN,

∵∠ABM+CBM90°,

∴∠CBM+BCN90°

∴∠CPB90°

OBOC,

OPBC1,

PA≥OAOP,

PA≥1,

PA的最小值為1,

PEABPFAD,

∴∠PEA=∠PFA=∠EAF90°

∴四邊形AEPF是矩形,

EFPA,

EF地方最小值為1

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:二次函數(shù)yx2+bx的圖象交x軸正半軸于點A,頂點為P,一次函數(shù)yx3的圖象交x軸于點B,交y軸于點C,∠OCA的正切值為

1)求二次函數(shù)的解析式與頂點P坐標(biāo);

2)將二次函數(shù)圖象向下平移m個單位,設(shè)平移后拋物線頂點為P,若SABPSBCP,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABCBC邊上一點,連接AD,作ABD的外接圓,將ADC沿直線AD折疊,點C的對應(yīng)點E落在上.

(1)求證:AE=AB;

(2)若∠CAB=90°,cosADB=,BE=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全民健身運動已成為一種時尚,為了了解我市居民健身運動的情況,某健身館的工作人員開展了一項問卷調(diào)查,問卷包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散布;E:不運動.

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.

運動形式

A

B

C

D

E

人數(shù)

12

30

m

54

9

請你根據(jù)以上信息,回答下列問題:

(1)接受問卷調(diào)查的共有   人,圖表中的m=   ,n=   ;

(2)統(tǒng)計圖中,A類所對應(yīng)的扇形圓心角的度數(shù)為   ;

(3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛的運動方式是   ,不運動的市民所占的百分比是   

(4)我市碧沙崗公園是附近市民喜愛的運動場所之一,每晚都有暴走團活動,若最鄰近的某社區(qū)約有1500人,那么估計一下該社區(qū)參加碧沙崗暴走團的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把三角形中最大內(nèi)角與最小內(nèi)角的度數(shù)差稱為該三角形的內(nèi)角正度值.如果等腰三角形的腰長為2,內(nèi)角正度值,那么該三角形的面積等于___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家支持大學(xué)生創(chuàng)新辦實業(yè),提供小額無息貸款,學(xué)生王亮享受國家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進價為每件40元,該品牌服裝售量y(件)與銷售價x(元/件)之間的關(guān)系可用圖中的一條線段(實線)來表示.

1)求日銷售量y與銷售價x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

2)該品牌服裝售價x為多少元時,每天的銷售利潤W最大,且最大銷售利潤W為多少?

3)若該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費用為106元(不包含貸款).現(xiàn)該店只有2名員工,則該店至少需要多少天才能還清所有貸款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,AC、DC為弦,ACD=60°,P為AB延長線上的點,APD=30°.

(1)求證:DP是O的切線;

(2)若O的半徑為3cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點的平分線上一點,連接、.

1)求證:

2)若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩塊完全相同的直角三角形紙板ABCDEF疊放,其中∠ABC=∠DEF90°,點O為邊BCEF的交點.

1)求證:△BOF≌△COE

2)若∠F30°AE1,求OC的長.

查看答案和解析>>

同步練習(xí)冊答案