【題目】振華書店準備購進甲、乙兩種圖書進行銷售,若購進本甲種圖書和本乙種圖書共需元,若購進本甲種圖書和本乙種圖書共需.

求甲、乙兩種圖書每本進價各多少元;

該書店購進甲、乙兩種圖書共本進行銷售,且每本甲種圖書的售價為元,每本乙種圖書的售價為元,如果使本次購進圖書全部售出后所得利潤不低于元,那么該書店至少需要購進乙種圖書多少本?

【答案】130;(270

【解析】

1)設每本甲種圖書的進價為元,每本乙種圖書的進價為元,得,解方程組可得;(2)設該書店購進乙種圖書本,購機甲種圖書.根據(jù)題意,得,解不等式組可得.

1)解:設每本甲種圖書的進價為元,每本乙種圖書的進價為.

根據(jù)題意 解得:

答:每本甲種圖書的進價為元,每本乙種圖書的進價為.

2)解:設該書店購進乙種圖書本,購機甲種圖書.

根據(jù)題意

解得

答:該書店至少購進乙圖書本.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,在中,,點點開始沿邊向點1厘米/秒的速度移動,點點開始沿邊向點2厘米/秒的速度移動.如果兩點分別從兩點同時出發(fā),當運動到點為止.

1)經(jīng)過幾秒鐘,?

2)經(jīng)過幾秒鐘,的面積等于?

3的面積能等面積的一半嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點DAB的中點,以點D為圓心作圓,半圓恰好經(jīng)過三角形的直角頂點C,以點D為頂點,作90°∠EDF,與半圓交于點E,F(xiàn),則圖中陰影部分的面積是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,射線BCO于點D,E是劣弧AD上一點,且,過點EEFBC于點F,延長FEBA的延長線交與點G

1)證明:GFO的切線;

2)若AG6,GE6,求△GOE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB, AB 之間的距離為 2 C、D 是直線兩個動點(點 C D 點的左側(cè)),且 AB=CD=5.連接 AC、BC、BD,將ABC 沿 BC 折疊得到A′BC.若以 A′、CB、D 為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,點EAB上,DEC90°

1)求證:ADE∽△BEC

2)若AD1BC3,AE2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A、B的坐標分別是(0,3)、(﹣4,0),

(1)將△AOB繞點A逆時針旋轉(zhuǎn)90°得到△AEF,點O,B對應點分別是E,F(xiàn),請在圖中畫出△AEF,并寫出E、F的坐標;

(2)以O點為位似中心,將△AEF作位似變換且縮小為原來的,在網(wǎng)格內(nèi)畫出一個符合條件的△A1E1F1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線ykx4k+4與拋物線yx2x交于A、B兩點.

1)直線總經(jīng)過定點,請直接寫出該定點的坐標;

2)點P在拋物線上,當k=﹣時,解決下列問題:

在直線AB下方的拋物線上求點P,使得△PAB的面積等于20;

連接OA,OB,OP,作PCx軸于點C,若△POC和△ABO相似,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,O為坐標原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點,現(xiàn)將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+ca≠0)經(jīng)過點D

1)如圖1,若該拋物線經(jīng)過原點O,且a=-

①求點D的坐標及該拋物線的解析式;

②連結(jié)CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;

2)如圖2,若該拋物線y=ax2+bx+ca≠0)經(jīng)過點E1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點的個數(shù)是3個,請直接寫出a的值.

查看答案和解析>>

同步練習冊答案