【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D.
(1)求證:AC平分∠DAB;
(2)若CD=4,AD=8,試求⊙O的半徑.
【答案】(1)見解析;(2)5
【解析】分析:(1)、連接OC,根據(jù)切線以及等腰三角形的性質(zhì)得出∠DAC=∠CAB,從而得出角平分線;(2)、作OE⊥AD于點E,設(shè)⊙O的半徑為x,根據(jù)題意得出四邊形OEDC是矩形,然后根據(jù)Rt△AOE的勾股定理得出答案.
詳解:(1)證明:如圖1,連接OC, ∵CD是切線,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,
∴∠1=∠4. ∵OA=OC,∴∠2=∠4,∴∠1=∠2, ∴AC平分∠DAB.
(2)解:如圖2,作OE⊥AD于點E,
設(shè)⊙O的半徑為x,∵AD⊥CD,OE⊥AD, ∴OE∥CD;
由(1),可得AD∥OC,∴四邊形OEDC是矩形,∴OE=CD=4,AE=AD﹣DE=8﹣x,
∴42+(8﹣x)2=x2, ∴80﹣16x+x2=x2, 解得x=5, ∴⊙O的半徑是5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠ABC的平分線與AC相交于點D,與⊙O過點A的切線相交于點E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩條直線AB,CD相交于點O,且∠AOC=∠AOD,射線OM從OB開始繞O點逆時針方向旋轉(zhuǎn),速度為15°/s,射線ON同時從OD開始繞O點順時針方向旋轉(zhuǎn),速度為12°/s,運動時間為t秒(0<t<12,本題出現(xiàn)的角均小于平角)
(1)圖中一定有 個直角;當(dāng)t=2時,∠MON的度數(shù)為 ,∠BON的度數(shù)為 ;
(2)若OE平分∠COM,OF平分∠NOD,當(dāng)∠EOF為直角時,請求出t的值;
(3)當(dāng)射線OM在∠COB內(nèi)部,且是定值時,求t的取值范圍,并求出這個定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】足球訓(xùn)練中,為了訓(xùn)練球員快速搶斷轉(zhuǎn)身,教練設(shè)計了折返跑訓(xùn)練.教練在東西方向的足球場上畫了一條直線插上不同的折返旗幟,如果約定向西為正,向東為負(fù),練習(xí)一組的行駛記錄如下(單位:米):+40,-30,+50,-25,+25,-30,+15,-28,+16,-20.
(1)球員最后到達(dá)的地方在出發(fā)點的哪個方向?距出發(fā)點多遠(yuǎn)?
(2)球員訓(xùn)練過程中,最遠(yuǎn)處離出發(fā)點多遠(yuǎn)?
(3)球員在一組練習(xí)過程中,跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張紙片的形狀為直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直線AD折疊該紙片,使直角邊AC與斜邊上的AE重合,則CD的長為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊OA、OC在坐標(biāo)軸上,且OC=2OA,M、N分別為OA、OC的中點,BM與AN交于點E,若四邊形EMON的面積為2,則經(jīng)過點B的雙曲線的解析式為( )
A. y=﹣ B. y=﹣ C. y=﹣ D. y=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中兩定點A(﹣1,0)、B(4,0),拋物線y=ax2+bx﹣2(a≠0)過點A,B,頂點為C,點P(m,n)(n<0)為拋物線上一點.
(1)求拋物線的解析式和頂點C的坐標(biāo);
(2)當(dāng)∠APB為鈍角時,求m的取值范圍;
(3)若m>,當(dāng)∠APB為直角時,將該拋物線向左或向右平移t(0<t<)個單位,點C、P平移后對應(yīng)的點分別記為C′、P′,是否存在t,使得首位依次連接A、B、P′、C′所構(gòu)成的多邊形的周長最短?若存在,求t的值并說明拋物線平移的方向;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A的坐標(biāo)為(﹣,0),點B的坐標(biāo)為(0,3).
(1)求過A,B兩點直線的函數(shù)表達(dá)式;
(2)過B點作直線BP與x軸交于點P,且使OP=2OA,求△ABP的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com