已知AB、CD分別是梯形ABCD的上、下底,且AB=8,EF是梯形的中位線長(zhǎng)為12,則 CD =          .
16

試題分析:EF為梯形中位線,則2EF=AB+CD。求得CD=24-8=16
點(diǎn)評(píng):本題難度較低,主要考查學(xué)生對(duì)梯形中位線性質(zhì)等知識(shí)點(diǎn)的掌握。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,BG=,則AF的長(zhǎng)為_(kāi)_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在下列命題中,屬于假命題的是
A.對(duì)角線相等的梯形是等腰梯形;
B.兩腰相等的梯形是等腰梯形;
C.底角相等的梯形是等腰梯形;
D.等腰三角形被平行于底邊的直線截成兩部分,所截得的四邊形是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)順次連接菱形的四條邊的中點(diǎn),得到的四邊形是     
(2)順次連接矩形的四條邊的中點(diǎn),得到的四邊形是     
(3)順次連接正方形的四條邊的中點(diǎn),得到的四邊形是     
(4)小青說(shuō):順次連接一個(gè)四邊形的各邊的中點(diǎn),得到的一個(gè)四邊形如果是正方形,那么原來(lái)的四邊形一定是正方形,這句話對(duì)嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在四邊形ABCD中,∠A=∠C=90°,∠B=60°,則∠D的外角為_(kāi)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向D以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊向B以2cm/s的速度移動(dòng),如果P、Q分別從A、C同時(shí)出發(fā),設(shè)移動(dòng)的時(shí)間為t(s),求:

(1)t為何值時(shí),四邊形PQCD為平行四邊形;
(2)t為何值時(shí),四邊形ABQP為矩形;
(3)t為何值時(shí),梯形PQCD是等腰梯形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四邊形ABCD為梯形,AD∥BC,∠ABC=30°,∠BCD=60°,AD=4,AB=3,則下底BC的長(zhǎng)為(    )
A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在等腰Rt△ABC中斜邊BC=9,從中裁剪內(nèi)接正方形DEFG,其中DE在斜邊BC上,點(diǎn)F、G分別在直角邊AC、AB上,按照同樣的方式在余下的三角形中繼續(xù)裁剪,如此操作下去,共可裁剪出邊長(zhǎng)大于1的正方形(    )個(gè)

A.2                     B.3              C.4              D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方形ABCD中,點(diǎn)EBC邊的中點(diǎn),點(diǎn)與點(diǎn)B關(guān)于AE對(duì)稱,AE交于點(diǎn)F,連接,FC。下列結(jié)論:①;②為等腰直角三角形;③;④。其中正確的是(       )
A.①②B.①②④C.③④D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案