【題目】正方形ABCD的邊長為4,將此正方形置于平面直角坐標系中,使AB邊落在X軸的正半軸上,且A點的坐標是(1,0).
(1)直線經(jīng)過點C,且與x軸交與點E,求四邊形AECD的面積;
(2)若直線l經(jīng)過點E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;
(3)若直線l1經(jīng)過點F(﹣,0),且與直線y=3x平行,將(2)中直線l沿著y軸向上平移個單位交軸x于點M,交直線l1于點N,求△NMF的面積.
【答案】(1)四邊形AECD在面積為10;(2)直線l的解析式為y=2x-4;(3)
【解析】試題分析:(1)由題意知邊長已經(jīng)告訴,易求四邊形的面積;
(2)直線l經(jīng)過點E且將正方形ABCD分成面積相等的兩部分,設(shè)與DC交于點F,根據(jù)正方形的性質(zhì),可求出F點坐標,設(shè)直線l的解析式是y=kx+b,把E、F的坐標代入即可求出解析式;
(3)根據(jù)直線l1經(jīng)過點F(﹣,0)且與直線y=3x平行,知k=3,把F的坐標代入即可求出b的值即可得出直線11,同理求出解析式y(tǒng)=2x-3,進一步求出M、N的坐標,利用三角形的面積公式即可求出△MNF的面積.
試題解析:(1)在y=x中,令y=4,即x=4,解得:x=5,則B的坐標是(5,0);
令y=0,即x=0,解得:x=2,則E的坐標是(2,0).
則OB=5,OE=2,BE=OB﹣OA=5﹣2=3,∴AE=AB﹣BE=4﹣3=1,
四邊形AECD的面積=(AE+CD)AD=(4+1)×4=10;
(2)經(jīng)過點E且將正方形ABCD分成面積相等的兩部分,則直線與CD的交點F,必有CF=AE=1,則F的坐標是(4,4).
設(shè)直線的解析式是y=kx+b,則,解得: .
則直線l的解析式是:y=2x﹣4;
(3)∵直線l1經(jīng)過點F(﹣,0)且與直線y=3x平行,
設(shè)直線11的解析式是y1=kx+b,則:k=3,
代入得:0=3×(﹣)+b,解得:b=,
∴y1=3x+,
已知將(2)中直線l沿著y軸向上平移個單位,則所得的直線的解析式是y=2x﹣4+,
即:y=2x﹣3,當y=0時,x=,∴M(,0),
解方程組得: ,即:N(﹣7,﹣19),
S△NMF=×[﹣(﹣)]×|﹣19|=.
答:△NMF的面積是.
科目:初中數(shù)學 來源: 題型:
【題目】小張第一次用180元購買了8套兒童服裝,以一定價格出售.如果以每套兒童服裝80元的價格為標準,超出的記作整數(shù),不足的記作負數(shù),記錄如下(單位:元):
請通過計算說明:
(1)小張賣完這8套兒童服裝后是盈利還是虧損?盈利(或虧損)了多少錢?
(2)每套兒童服裝的平均售價是多少元?
(3)小張第二次用第一次的進價再次購買900元的兒童服裝,如果他預計第二次每套服裝的平均售價75元,按他的預計第二次售價可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織學生到距離學校6千米的科技館去參觀,小華因事沒能乘上學校的包車,于是準備在學校門口改乘出租車去科技館,出租車收費標準有兩種類型,如下表:
里程 | 甲類收費(元) | 乙類收費(元) |
3千米以下(包含3千米) | 7.00 | 6.00 |
3千米以上,每增加1千米 | 1.60 | 1.40 |
(1)設(shè)出租車行駛的里程為x千米(且x取正整數(shù)),分別寫出兩種類型的總收費(用含x的代數(shù)式表示);
(2)小華身上僅有11元,他乘出租車到科技館車費夠不夠請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:O是直線AB上的一點,是直角,OE平分.
(1)如圖1.若.求的度數(shù);
(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究和的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,點P是AB邊上一點(不與A,B重合),連接CP,過點P作PQ⊥CP交AD于點Q,連接CQ。取CQ的中點M,連接MD,MP,若MD⊥MP,則AQ的長________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形OABC的頂點O在原點。
(1)如圖①,點C的坐標為(,),且實數(shù),滿足,求C點的坐標及線段0C的長度;
(2)如圖②,點F在BC上,AB交x軸于點E,EF,OC的延長線交于點G,EG=OG,求∠EOF的度數(shù);
(3)如圖③,將(1)中正方形OABC繞點O順時針旋轉(zhuǎn),使OA落在y軸上,E為AB上任意一點,OE的垂直平分線交x軸于點G,交OE于點P,連接EG交BC于點F,求△BEF的周長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設(shè)A=.
(1)化簡A;
(2)當a=3時,記此時A的值為f(3);當a=4時,記此時A的值為f(4)……解關(guān)于x的不等式:-≤f(3)+f(4)+…+f(11),并將它的解集在數(shù)軸上表示出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com