【題目】如圖,在正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,AC的坐標(biāo)分別是(4,6),(14)

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請(qǐng)畫(huà)出△ABC向右平移6個(gè)單位的A1B1C1,并寫(xiě)出C1的坐標(biāo)   ;

(3)請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2 , 并寫(xiě)出點(diǎn)C2的坐標(biāo)   

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析; (5,4) ;(3)見(jiàn)解析; (1,-4).

【解析】

1)根據(jù)A、C兩點(diǎn)的坐標(biāo)建立平面直角坐標(biāo)系即可;
2)根據(jù)圖形平移的性質(zhì)畫(huà)出△A1B1C1,然后寫(xiě)出點(diǎn)C1坐標(biāo);
3)分別作出點(diǎn)A、BC關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)A2、B2、C2,連接A2、B2、C2即可得到△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2,然后寫(xiě)出點(diǎn)C2坐標(biāo).

解:(1)如圖,建立平面直角坐標(biāo)系;

(2)如圖,△A1B1C1為所作;點(diǎn)C1的坐標(biāo)為(5,4) ;

(3)如圖,△A2B2C2為所作;點(diǎn)C2的坐標(biāo)為(1,-4).

故答案為:(1)見(jiàn)解析;(2)見(jiàn)解析; (5,4) ;(3)見(jiàn)解析; (1,-4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)0AC邊上一動(dòng)點(diǎn),過(guò)點(diǎn)0DE,使DEBCDE交∠ACB的角平分線于點(diǎn)D,交∠ACB的外角平分線于點(diǎn)E.

(1)求證:OD=OE;

(2)當(dāng)點(diǎn)0運(yùn)動(dòng)到何處時(shí),四邊形CDAE是矩形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在黃州服裝批發(fā)市場(chǎng),某種品牌的時(shí)裝當(dāng)季節(jié)將來(lái)臨時(shí),價(jià)格呈上升趨勢(shì),設(shè)這種時(shí)裝開(kāi)始時(shí)定價(jià)為20元,并且每周(7天)漲價(jià)2元,從第6周開(kāi)始保持30元的價(jià)格平穩(wěn)銷(xiāo)售;從第12周開(kāi)始,當(dāng)季節(jié)即將過(guò)去時(shí),平均每周減價(jià)2元,直到第16周周末,該服裝不再銷(xiāo)售.

(1)試建立銷(xiāo)售價(jià)y與周次x之間的函數(shù)關(guān)系式;

(2)若這種時(shí)裝每件進(jìn)價(jià)Z與周次x次之間的關(guān)系為Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x為整數(shù),試問(wèn)該服裝第幾周出售時(shí),每件銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A、BC是數(shù)軸上的三點(diǎn),點(diǎn)C表示的數(shù)是6,點(diǎn)B與點(diǎn)C之間的距離是4,點(diǎn)B與點(diǎn)A的距離是12,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn).

1)數(shù)軸上點(diǎn)A表示的數(shù)為   .點(diǎn)B表示的數(shù)為   ;

2)數(shù)軸上是否存在一點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離和為16,若存在,請(qǐng)求出此時(shí)點(diǎn)P所表示的數(shù);若不存在,請(qǐng)說(shuō)明理由;

3)點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從C點(diǎn)向左運(yùn)動(dòng),點(diǎn)Q以每秒2個(gè)單位長(zhǎng)度從點(diǎn)B出發(fā)向左運(yùn)動(dòng),點(diǎn)R從點(diǎn)A以每秒5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),它們同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為t秒,請(qǐng)求點(diǎn)P與點(diǎn)Q,點(diǎn)R的距離相等時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程或方程組解應(yīng)用題:

為了響應(yīng)學(xué)校提出的節(jié)能減排,低碳生活的倡議,班會(huì)課上小李建議每位同學(xué)都踐行雙面打印,節(jié)約用紙.他舉了一個(gè)實(shí)際例子:打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,總質(zhì)量為160.已知每頁(yè)薄型紙比厚型紙輕0.8克,求例子中的A4厚型紙每頁(yè)的質(zhì)量.(墨的質(zhì)量忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)(學(xué)習(xí)心得

小剛同學(xué)在學(xué)習(xí)完這一章內(nèi)容后,感覺(jué)到一些幾何問(wèn)題,如果添加輔助圓,運(yùn)用圓的知識(shí)解決,可以使問(wèn)題變得非常容易.

例如:如圖,在中,,,外一點(diǎn),且,求的度數(shù),若以點(diǎn)為圓心,為半徑作輔助圓,則點(diǎn)、必在上,的圓心角,而是圓周角,從而可容易得到__________

(2)(問(wèn)題解決

如圖,在四邊形中,,,求的度數(shù).

小剛同學(xué)認(rèn)為用添加輔助圓的方法,可以使問(wèn)題快速解決,他是這樣思考的:的外接圓就是以的中點(diǎn)為圓心,長(zhǎng)為半徑的圓;的外接圓也是以的中點(diǎn)為圓心,長(zhǎng)為半徑的圓.這樣、、四點(diǎn)在同一個(gè)圓上,進(jìn)而可以利用圓周角的性質(zhì)求出的度數(shù),請(qǐng)運(yùn)用小剛的思路解決這個(gè)問(wèn)題.

(3)(問(wèn)題拓展

如圖,在中,邊上的高,且,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是邊長(zhǎng)為6的等邊三角形,點(diǎn)DE分別是邊AB、AC的中點(diǎn),將ADE繞點(diǎn)A旋轉(zhuǎn),BDCE所在的直線交于點(diǎn)F

(1)如圖(2)所示,將ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),且旋轉(zhuǎn)角不大于60°,∠CFB的度數(shù)是多少?說(shuō)明你的理由?

(2)當(dāng)ADE繞點(diǎn)A旋轉(zhuǎn)時(shí),若BCF為直角三角形,求出線段BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,有一個(gè)等腰直角三角形AOB,∠OAB=90°,直角邊AOx軸上,AO=1.將Rt△AOB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,A1O=2AO再將Rt△A1OB1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰三角形A2OB2,A2O=2A1O……依此規(guī)律,得到等腰直角三角形A2 017OB2 017則點(diǎn)B2 017的坐標(biāo)(  )

A. (22 017,-22 017 B. (22 016,-22 016 C. (22 017,22 017 D. (22 016,22 016

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線圖像與y軸、x軸分別交于A、B兩點(diǎn)

1)求點(diǎn)AB坐標(biāo)和∠BAO度數(shù)

2)點(diǎn)C、D分別是線段OA、AB上一動(dòng)點(diǎn)(不與端點(diǎn)重合),且CD=DA,設(shè)線段OC的長(zhǎng)度為x ,,請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系式以及定義域

3)點(diǎn)CD分別是射線OA、射線BA上一動(dòng)點(diǎn),且CD=DA,當(dāng)ΔODB為等腰三角形時(shí),求C的坐標(biāo)(第(3)小題直接寫(xiě)出分類(lèi)情況和答案,不用過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案