【題目】如圖,△AEF中,∠EAF=45°,AG⊥EF于點G,現(xiàn)將△AEG沿AE折疊得到△AEB,將△AFG沿AF折疊得到△AFD,延長BE和DF相交于點C.
(1)求證:四邊形ABCD是正方形;
(2)連接BD分別交AE、AF于點M、N,將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH,試判斷線段MN、ND、DH之間的數(shù)量關(guān)系,并說明理由.
(3)若EG=4,GF=6,BM=3,求AG、MN的長.
【答案】(1)證明見解析;(2)MN2=ND2+DH2,理由見解析;(3)
【解析】
(1)由圖形翻折變換的性質(zhì)可知∠ABE=∠AGE=∠BAD=∠ADC=90°,AB=AD即可得出結(jié)論;
(2)連接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°,故∠NDH=90°,再證△AMN≌△AHN,得MN=NH,由勾股定理即可得出結(jié)論;
(3)設(shè)AG=x,則EC=x-4,CF=x-6,在Rt△ECF中,利用勾股定理即可得出AG的值,同理可得出BD的長,設(shè)NH=y,在Rt△NHD,利用勾股定理即可得出MN的值.
(1)證明:∵△AEB由△AED翻折而成,
∴∠ABE=∠AGE=90°,∠BAE=∠EAG,AB=AG,
∵△AFD由△AFG翻折而成,
∴∠ADF=∠AGF=90°,∠DAF=∠FAG,AD=AG,
∵∠EAG+∠FAG=∠EAF=45°,
∴∠ABE=∠AGE=∠BAD=∠ADC=90°,
∴四邊形ABCD是矩形,
∵AB=AD,
∴四邊形ABCD是正方形;
(2)MN2=ND2+DH2,
理由:連接NH,
∵△ADH由△ABM旋轉(zhuǎn)而成,
∴△ABM≌△ADH,
∴AM=AH,BM=DH,
∵由(1)∠BAD=90°,AB=AD,
∴∠ADH=∠ABD=45°,
∴∠NDH=90°,
∵,
∴△AMN≌△AHN,
∴MN=NH,
∴MN2=ND2+DH2;
(3)設(shè)AG=BC=x,則EC=x-4,CF=x-6,
在Rt△ECF中,
∵CE2+CF2=EF2,即(x-4)2+(x-6)2=100,x1=12,x2=-2(舍去)
∴AG=12,
∵AG=AB=AD=12,∠BAD=90°,
∴BD==,
∵BM=3,
∴MD=BD-BM=12-3=9,
設(shè)NH=y,
在Rt△NHD中,
∵NH2=ND2+DH2,即y2=(9-y)2+(3)2,解得y=5,即MN=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點.
(1)求證:四邊形BDEC是平行四邊形;
(2)連接AD、BE,△ABC添加一個條件: ,使四邊形DBEA是矩形(不需說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90,BC=6,AC=8.動點M從點B開始沿邊BC向點C以每秒1個單位長度的速度運動,動點N從點C開始沿邊CA向點A以每秒2個單位長度的速度運動,點M、N同時出發(fā),且當(dāng)其中一點到達端點時,另一點也隨之停止運動.過點M作MD∥AC,交AB于點D,連接MN.設(shè)運動時間為t秒(t≥0).
(1)當(dāng)t為何值時,四邊形ADMN為平行四邊形?
(2)是否存在t的值,使四邊形ADMN為菱形?若存在,求出t的值;若不存在,說明理由.并探究只改變點N的速度(勻速運動),使四邊形ADMN在某一時刻為菱形,求點N的速度;
(3)如圖2,在整個運動過程中,求出線段MN中點P所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】西安市2016年中考,綜合素質(zhì)測試滿分為100分.某校為了調(diào)查學(xué)生對于綜合素質(zhì)的掌握程度,在九年級學(xué)生中隨機抽取了部分學(xué)生進行模擬測試,并將測試成績繪制成下面兩幅統(tǒng)計圖.
試根據(jù)統(tǒng)計圖中提供的數(shù)據(jù),回答下面問題:
(1)計算樣本中,成績?yōu)?/span>98分的學(xué)生有 ,并補全條形統(tǒng)計圖.
(2)樣本中,測試成績的中位數(shù)是 分,眾數(shù)是 分.
(3)若該校九年級共有2000名學(xué)生,根據(jù)此次模擬成績估計該校九年級中考綜合素質(zhì)測試將有多少名學(xué)生可以獲得滿分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的垂直平分線上.
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的直徑,是的弦,平分交于點,連接、,過點作,交的延長線于點.
(1)________(填“>”,“<”或“=”);
(2)求證:是的切線;
(3)若的直徑為10,sin∠BAC=,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標(biāo)一工程隊負(fù)責(zé)在山腳下修建一座水庫的土方施工任務(wù).該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.
(1)分別求每臺型, 型挖掘機一小時挖土多少立方米?
(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com