【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,CN為⊙O的切線,OM⊥AB于點O,分別交AC、CN于D、M兩點.
(1)求證:MD=MC;
(2)若⊙O的半徑為5,AC=4,求MC的長.
【答案】(1)證明見解析;(2)MC=.
【解析】(1)連接OC,利用切線的性質證明即可;
(2)根據相似三角形的判定和性質以及勾股定理解答即可.
(1)連接OC,
∵CN為⊙O的切線,
∴OC⊥CM,∠OCA+∠ACM=90°,
∵OM⊥AB,
∴∠OAC+∠ODA=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠ACM=∠ODA=∠CDM,
∴MD=MC;
(2)由題意可知AB=5×2=10,AC=4,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴BC==2,
∵∠AOD=∠ACB,∠A=∠A,
∴△AOD∽△ACB,
∴,即,
可得:OD=2.5,
設MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,
解得:x=,
即MC=.
科目:初中數學 來源: 題型:
【題目】如圖,兩摞規(guī)格完全相同的課本整齊疊放在桌子上,請根據圖中所給出的數據信息,回答下列問題:
(1)每本課本的厚度為 ;
(2)若有一摞上述規(guī)格的課本本,整齊疊放在桌子上,請用含的代數式表示出這一摞數學課本的頂部距離地面的高度為( );
(3)當時,若從中取走15本,求余下的課本的頂部距離地面的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C,E,F,B在同一直線上,點A,D在BC異側,AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,點M、 N分別在AB、CD上,AM=CN, MN與AC交于點O,連接BO,若∠BAC=29°,則∠OBC為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學習小組在學習了函數及函數圖象的知識后,想利用此知識來探究周長一定的矩形其邊長分別為多少時面積最大. 請將他們的探究過程補充完整.
(1)列函數表達式:若矩形的周長為8,設矩形的一邊長為x,面積為y,則有y=____________;
(2)上述函數表達式中,自變量x的取值范圍是____________;
(3)列表:
x | … | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | … |
y | … | 1.75 | 3 | 3.75 | 4 | 3.75 | 3 | m | … |
寫出m=____________;
(4)畫圖:在平面直角坐標系中已描出了上表中部分各對應值為坐標的點,請你畫出該函數的圖象;
(5)結合圖象可得,x=____________時,矩形的面積最大;寫出該函數的其它性質(一條即可):____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+4圖象交直線OA于點A(1,2),交y軸于點B,點C為坐標平面內一點.
(1)求k值;
(2)若以O、A、B、C為頂點的四邊形為菱形,則C點坐標為 ;
(3)在直線AB上找點D,使△OAD的面積與((2)中菱形面積相等,則D點坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數學名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問題:
一百饅頭一百僧,大僧三個更無爭,
小僧三人分一個,大小和尚得幾。
意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,下列求解結果正確的是( 。
A. 大和尚25人,小和尚75人 B. 大和尚75人,小和尚25人
C. 大和尚50人,小和尚50人 D. 大、小和尚各100人
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數;
(2)當點P運動時,∠APB與∠ADB之間的數量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.
(3)當點P運動到使∠ACB=∠ABD時,直接寫出∠ABC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列三個條件:①∠EBO=∠DCO;②;③.
(1)上述三個條件中,由哪兩個條件可以判定是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,說明你的理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com