【題目】如圖,四邊形ABDC中,∠D=∠ABD=90°,點(diǎn)O為BD的中點(diǎn),且OA平分∠BAC.
(1)求證:OC平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.
【答案】
(1)證明:過點(diǎn)O作OE⊥AC于E,
∵∠ABD=90゜,OA平分∠BAC,
∴OB=OE,
∵點(diǎn)O為BD的中點(diǎn),
∴OB=OD,
∴OE=OD,
∴OC平分∠ACD
(2)證明:在Rt△ABO和Rt△AEO中,
,
∴Rt△ABO≌Rt△AEO(HL),
∴∠AOB=∠AOE,
同理求出∠COD=∠COE,
∴∠AOC=∠AOE+∠COE= ×180°=90°,
∴OA⊥OC
(3)證明:∵Rt△ABO≌Rt△AEO,
∴AB=AE,
同理可得CD=CE,
∵AC=AE+CE,
∴AB+CD=AC.
【解析】(1)過點(diǎn)O作OE⊥AC于E,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得OB=OE,從而求出OE=OD,然后根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上證明;(2)利用“HL”證明△ABO和△AEO全等,根據(jù)全等三角形對應(yīng)角相等可得∠AOB=∠AOE,同理求出∠COD=∠COE,然后求出∠AOC=90°,再根據(jù)垂直的定義即可證明;(3)根據(jù)全等三角形對應(yīng)邊相等可得AB=AE,CD=CE,然后證明即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.﹣3(x﹣4)=﹣3x+12B.(﹣3x)2=6x2
C.3x+x2=3xD.x8÷x2=x4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時(shí)魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時(shí),可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時(shí),為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.
(1)請直接寫出第5節(jié)套管的長度;
(2)當(dāng)這根魚竿完全拉伸時(shí),其長度為311cm,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是將一正方體貨物沿坡面AB裝進(jìn)汽車貨廂的平面示意圖。已知長方體貨廂的高度BC為米,tanA=。現(xiàn)把圖中的貨物繼續(xù)往前平移,當(dāng)貨物頂點(diǎn)D與C重合時(shí),仍可把貨物放平裝進(jìn)貨廂,求BD的長。(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com