(2008•大連)如圖,PA、PB是⊙O的切線,切點分別為A、B、C是⊙O上一點,若∠APB=40°,求∠ACB的度數(shù).

【答案】分析:首先連接過切點的半徑,根據(jù)切線的性質求得∠AOB的度數(shù),再根據(jù)四邊形的內角和定理就可得出要求的角.
解答:解:連接OA,OB,
∵PA,PB是⊙O的切線,
∴PA⊥OA,PB⊥OB,
∴∠AOB=360°-(90°+90°+40°)=140°,
∴∠ACB=∠AOB=70°.
點評:此題連接過切點的半徑是常見的輔助線.此題綜合運用了切線的性質定理和圓周角定理解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《三角形》(03)(解析版) 題型:選擇題

(2008•大連)如圖,梯形ABCD中,AD∥BC,中位線EF交BD于點O,若FO-EO=5,則BC-AD為( )

A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2008•大連)如圖1,拋物線y=x2的頂點為P,A、B是拋物線上兩點,AB∥x軸,四邊形ABCD為矩形,CD邊經(jīng)過點P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線“y=x2”,改為拋物線“y=x2+bx+c”,其他條件不變,請猜想矩形ABCD的面積;
(3)若將拋物線“y=x2+bx+c”改為拋物線“y=ax2+bx+c”,其他條件不變,請猜想矩形ABCD的面積.(用a、b、c表示,并直接寫出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面積為常數(shù)時,矩形ABCD需要滿足什么條件并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《有理數(shù)》(03)(解析版) 題型:選擇題

(2008•大連)如圖,兩溫度計讀數(shù)分別為我國某地今年2月份某天的最低氣溫零下5℃與最高氣溫零上7℃,那么這天的最高氣溫比最低氣溫高( )

A.5℃
B.7℃
C.12℃
D.-12℃

查看答案和解析>>

科目:初中數(shù)學 來源:2008年遼寧省大連市中考數(shù)學試卷(解析版) 題型:解答題

(2008•大連)如圖1,拋物線y=x2的頂點為P,A、B是拋物線上兩點,AB∥x軸,四邊形ABCD為矩形,CD邊經(jīng)過點P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線“y=x2”,改為拋物線“y=x2+bx+c”,其他條件不變,請猜想矩形ABCD的面積;
(3)若將拋物線“y=x2+bx+c”改為拋物線“y=ax2+bx+c”,其他條件不變,請猜想矩形ABCD的面積.(用a、b、c表示,并直接寫出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面積為常數(shù)時,矩形ABCD需要滿足什么條件并說明理由.

查看答案和解析>>

同步練習冊答案