【題目】數(shù)學老師在課堂上展示一矩形紙片,如圖,在矩形ABCD中,AB=6cm,BC=8cm.他要將此矩形做一個梯形教具,現(xiàn)進行如下操作:
先將矩形ABCD的點D折疊到對角線AC上的點F處,折痕為CE,再將折疊的部分裁掉;
問:(1)所裁部分DE的長;
(2)所裁成的梯形ABCE的面積是多少?
【答案】(1)3cm;(2)39cm2;
【解析】
(1)由四邊形ABCD是矩形,即可得∠D=∠B=90°,CD=AB=6cm,AD=BC=8cm,由勾股定理,即可得AC的長,設DE=xcm,又由折疊的性質(zhì)即可求得AE,EF,AF的長,根據(jù)勾股定理即可得方程:(8-x)2=16+x2,解此方程即可求得答案;
(2)由梯形的面積公式,即可求得裁成的梯形ABCE的面積.
(1)∵四邊形ABCD是矩形,
∴∠D=∠B=90,CD=AB=6cm,AD=BC=8cm,
在Rt△ABC中,AC==10(cm),
設DE=xcm,
根據(jù)折疊的性質(zhì)可得:EF=DE=xcm,CF=CD=6cm,∠EFC=∠D=90,
∴∠AFE=90,AE=ADDE=8x(cm),AF=ACCF=106=4(cm),
在Rt△AEF中,AE2=AF2+EF2,
即(8x)2=16+x2,
解得:x=3,
∴DE=3cm;
(2)∵AE=ADDE=83=(5cm)
∴S梯形ABCE=12(AE+BC)AB=12×(5+8)×6=39(cm2)
∴所裁成的梯形ABCE的面積是39cm2.
科目:初中數(shù)學 來源: 題型:
【題目】學校準備購進一批籃球和排球,買2個籃球和3個排球共需230元,買3個籃球和2個排球共需290元。
(1)求一個籃球和一個排球的售價各是多少元?
(2 )學校欲購進籃球和排球共120個,且排球的數(shù)量不多于籃球的數(shù)量的2倍少10,求出最多購買排球多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過70千米小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A的正前方60米處的C點,過了5秒后,測得小汽車所在的B點與車速檢測儀A之間的距離為100米.
求BC間的距離;這輛小汽車超速了嗎?請說明理由.
【答案】這輛小汽車沒有超速.
【解析】
(1)根據(jù)勾股定理求出BC的長;
(2)直接求出小汽車的時速,進行比較得出答案.
(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB為斜邊,根據(jù)勾股定理,得BC=80 m.
(2)這輛小汽車沒有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴這輛小汽車沒有超速.
【點睛】
考查勾股定理的應用,熟練掌握勾股定理是解題的關鍵.
【題型】解答題
【結束】
19
【題目】已知:如圖,線段AC和BD相交于點G,連接AB,CD,E是CD上一點,F是DG上一點,,且.
求證:;若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=-1,給出四個結論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點B(-,y1),C(-,y2)為函數(shù)圖象上的兩點,則y1<y2.其中正確結論是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=8,點E、F分別在AD和AB上,AE=3,AF=4.
(1)點P在邊BC上運動、四邊形EFPH是平行四邊形,連接DH.
①當四邊形FPHE是菱形時,線段BP=_____;
②當點P在邊BC上運動時,△DEH的面積會不會變化?若變化,求其最大值;若不變,求出它的值;
③當△DEH是等腰三角形時,求BP的長;
(2)若點E沿E-D-C向終點C運動,點F沿F-B-C終點C運動,速度分別為每秒3個單位長度和每秒4個單位長度,當其中一個點到達終點C時,另一個點也停止運動,求EF的中點O的運動路徑長(要求寫出簡略的計算過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一批貨物要運往某地,貨主準備租用汽車運輸公司的甲、乙兩種貨車,已知過去兩次租用這兩種貨車的運貨情況如下表:
第一次 | 第二次 | |
甲種貨車的輛數(shù) | 2輛 | 5輛 |
乙種貨車的輛數(shù) | 3輛 | 6輛 |
累計運貨重量 | 14噸 | 32噸 |
(1)分別求甲乙兩種貨車每輛載重多少噸?
(2)現(xiàn)租用該公司3輛甲種貨車和5輛乙種貨車剛好一次運完這批貨物,如果按每噸付運費120元計算,貨主應付運費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初二年級教師對試卷講評課中學生參與的深度與廣度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了 名學生;
(2)在扇形統(tǒng)計圖中,項目“獨立思考”所在的扇形的圓心角的度數(shù)為 度;
(3)請將條形統(tǒng)計圖補充完整;
(4)如果全市有6000名初二學生,那么在試卷評講課中,“獨立思考”的初二學生約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com