【題目】如圖,等邊三角形ABC的邊長為4厘米,長為1厘米的線段MN在△ABC的邊AB上沿AB方向以1厘米/秒的速度向B點運動(運動開始時,點M與點A重合,點N到達(dá)點B時運動終止),過點M、N分別作AB邊的垂線,與△ABC的其它邊交于P、Q兩點.線段MN在運動的過程中,四邊形MNQP的面積為S,運動的時間為t.則大致反映S與t變化關(guān)系的圖象是( )
A.
B.
C.
D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,點G是BC的中點,點H在AF上,動點P以每秒2cm的速度沿圖1的邊線運動,運動路徑為:G→C→D→E→F→H,相應(yīng)的△ABP的面積y(cm2)關(guān)于運動時間t(s)的函數(shù)圖象如圖2,若AB=6cm,則下列四個結(jié)論中正確的個數(shù)有( 。
①圖1中的BC長是8cm, ②圖2中的M點表示第4秒時y的值為24cm2,
③圖1中的CD長是4cm, ④圖2中的N點表示第12秒時y的值為18cm2.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(-4,1)、B(-1,1)、C(-4,3).
(1)畫出Rt△ABC關(guān)于原點O成中心對稱的圖形Rt△A1B1C1;
(2)若Rt△ABC與Rt△A2BC2關(guān)于點B中心對稱,則點A2的坐標(biāo)為、C2的坐標(biāo)為 .
(3)求點A繞點B旋轉(zhuǎn)180°到點A2時,點A在運動過程中經(jīng)過的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖形及題意填空,并在括號里寫上理由.
己知:如圖,,平分.
試說明:.
解:因為平分(已知)
所以(角平分線的定義)
因為(已知)
所以∠_________=∠__________(________)
∠____________=∠_________(___________)
所以.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知∠1+∠2=180°,∠2=∠B,試說明∠DEC+∠C=180°,請完成下列填空:
證明:∵∠1+∠2=180°(已知)
∴_____∥_____(____________________)
∴______=∠EFC(____________________)
又∵2=∠B(已知)
∴∠2=______(等量代換)
∴___________(內(nèi)錯角相等,兩直線平行)
∴∠DEC+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東家與學(xué)校之間是一條筆直的公路,早飯后,小東步行前往學(xué)校,途中發(fā)現(xiàn)忘帶畫板,停下給媽媽打電話,媽媽接到電話后,帶上畫板馬上趕往學(xué)校,同時小東沿原路返回,兩人相遇后,小東立即趕往學(xué)校,媽媽沿原路返回16min到家,再過5min小東到達(dá)學(xué)校,小東始終以100m/min的速度步行,小東和媽媽的距離y(單位:m)與小東打完電話后的步行時間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列四種說法:
①打電話時,小東和媽媽的距離為1400米;
②小東和媽媽相遇后,媽媽回家速度為50m/min;
③小東打完電話后,經(jīng)過27min到達(dá)學(xué)校;
④小東家離學(xué)校的距離為2900m.
其中正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將2×2的正方形網(wǎng)格如圖所示的放置在平面直角坐標(biāo)系中,每個小正方形的頂點稱為格點,每個小正方形的邊長都是1,正方形ABCD的頂點都在格點上,若直線y=kx(k≠0)與正方形ABCD有公共點,則k不可能是( )
A.3
B.2
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
在平面直角坐標(biāo)系xOy中,點P(x0 , y0)到直線Ax+By+C=0的距離公式為:d= .
例如:求點P0(0,0)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴點P0(0,0)到直線4x+3y﹣3=0的距離為d= = .
根據(jù)以上材料,解決下列問題:
(1)點P1(3,4)到直線y=﹣ x+ 的距離為;
(2)已知:⊙C是以點C(2,1)為圓心,1為半徑的圓,⊙C與直線y=﹣ x+b相切,求實數(shù)b的值;
(3)如圖,設(shè)點P為問題2中⊙C上的任意一點,點A,B為直線3x+4y+5=0上的兩點,且AB=2,請求出S△ABP的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個結(jié)論中: ①△BDE是等邊三角形; ②AE∥BC; ③△ADE的周長是9; ④∠ADE=∠BDC.其中正確的序號是( 。
A.②③④B.①②④C.①②③D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com