【題目】如圖,已知△ABC≌△ADE,BC的延長線交AD于點M,交DE于點F.若∠D=25°,∠AED=105°,∠DAC=10°,求∠DFB的度數(shù).
【答案】60°
【解析】
根據(jù)三角形內(nèi)角和定理可得∠DAE=50°,再根據(jù)全等三角形的性質(zhì)可得∠B=∠D=25°,∠BAC=∠DAE=50°,根據(jù)角的和差關(guān)系可得∠BAD=60°,再根據(jù)三角形外角的性質(zhì)可得∠AMF的度數(shù),最后根據(jù)∠DFB=∠AMF-∠D即可求解∠DFB的度數(shù).
解:∵∠D=25°,∠AED=105°,
∴∠DAE=50°
又∵△ABC≌△ADE,
∴∠B=∠D=25°,∠BAC=∠DAE=50°
∵∠DAC=10°,
∴∠BAD=60°,
∵∠AMF=∠BAD+∠B=60°+25°=85°,
∴∠DFB=∠AMF-∠D=85°-25°=60°
科目:初中數(shù)學 來源: 題型:
【題目】某中學九(2)班同學為了了解2019年某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)的部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理:
月均用水量(噸) | 頻數(shù) | 頻率 |
6 | 0.12 | |
________ | 0.24 | |
16 | 0.32 | |
10 | 0.20 | |
4 | ________ | |
2 | 0.04 |
請解答以下問題:
(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2)月均用水量的中位數(shù)落在第________小組;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過20噸的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線DA與⊙O相切于點A,DO交⊙O于點C,連接BC,若∠ABC=21°,則∠ADC的度數(shù)為( )
A.46°
B.47°
C.48°
D.49°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在 中, , .點O是BC的中點,點D沿B→A→C方向從B運動到C.設(shè)點D經(jīng)過的路徑長為 ,圖1中某條線段的長為y,若表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,則這條線段可能是圖1中的( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,狀態(tài)如圖所示。大正方形固定不動,把小正方形以1厘米∕秒的速度向大正方形的內(nèi)部沿直線平移,設(shè)平移的時間為t秒,兩個正方形重疊部分的面積為S厘米2,完成下列問題:
(1)平移到1.5秒時,重疊部分的面積為 厘米2.
(2)求小正方形在平移過程中,S與t的關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2 h,并且甲車途中休息了0.5 h,如圖是甲、乙兩車行駛的路程y(km)與時間x(h)的函數(shù)圖象.
(1)求出圖中m和a的值.
(2)求出甲車行駛的路程y(km)與時間x(h)的函數(shù)關(guān)系式,并寫出相應(yīng)的x的取值范圍.
(3)當乙車行駛多長時間時,兩車恰好相距50 km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學三次到某超市購買A、B兩種商品,其中僅有一次是由折扣的,購買數(shù)量及消費金額如下表:
解答下列問題:
(1)第_______次購買的商品有折扣;
(2)求A、B兩種商品的原價;
(3)若購買A、B兩種商品的折扣數(shù)相同,則折扣數(shù)為______折;
(4)小明同學再次購買A、B兩種商品共10件,在(3)的折扣數(shù)的前提下,這10件商品的消費金額不超過200元,求至少購買A商品的件數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副含 和 角的三角板 和 疊合在一起,邊 與 重合, (如圖1),點 為邊 的中點,邊 與 相交于點 ,此時線段 的長是 . 現(xiàn)將三角板 繞點 按順時針方向旋轉(zhuǎn)(如圖2),在 從 到 的變化過程中,點 相應(yīng)移動的路徑長共為 . (結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,點O在邊AB上,⊙O過點B且分別與邊AB、BC相交于點D、E、F是AC上的點,判斷下列說法錯誤的是( )
A.若EF⊥AC,則EF是⊙O的切線
B.若EF是⊙O的切線,則EF⊥AC
C.若BE=EC,則AC是⊙O的切線
D.若BE= EC,則AC是⊙O的切線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com