【題目】如圖,拋物線y=ax2-6ax+6(a≠0)與x軸交于點A(8,0),與y軸交于點B,在X軸上有一動點E(m,0)(0<m<8),過點E作x軸的垂線交直線AB于點N,交拋物線于點P,過點P作PM⊥AB于點M.
()分別求出直線AB和拋物線的函數(shù)表達(dá)式;
()設(shè)△PMN的面積為S1,△AEN的面積為S2,若S1:S2=36:25,求m的值;
()如圖2,在()條件下,將線段OE繞點O逆時針旋轉(zhuǎn)得到OE',旋轉(zhuǎn)角為α(0°<α<90°),連接E'A、E'B.
①在x軸上找一點Q,使△OQE'∽△OE'A,并求出Q點的坐標(biāo);
②求BE'+AE'的最小值.
【答案】(1); ;(2)4;(3)①,②.
【解析】分析:(1)把點A(8,0)代入拋物線y=ax-6ax+6,可求得a的值,從而可得到拋物線的解析式,然后求得點A和點B的坐標(biāo),最后利用待定系數(shù)法可求得直線AB的解析式;
(2)E(m,0),則N(m,-m+6),P(m, +6),然后證明△ANE∽△ABO,依據(jù)相似三角形的性質(zhì)可求得AN的長,接下來,再證明△NMP∽△NEA,然后依據(jù)相似三角形的性質(zhì)可得到,從而可求得PM=12-m,然后依據(jù)PM=m+3m,然后列出關(guān)于m的方程求解即可;
(3)①在(2)的條件下,m=4,則OE′=OE=4,然后再證明△OQE′∽△OE′A,依據(jù)相似三角形的性質(zhì)可得到,從而可求得OQ的值,于是可得到點Q的坐標(biāo);
②由①可知,當(dāng)Q為(2,0)時,△OQE′∽△OE′A,且相似比為,于是得到BE′+AE′=BE′+QE′,當(dāng)點B、Q、E′在一條直線上時,BE′+QE′最小,最小值為BQ的長.
本題解析:
()把點代入拋物線
得,
∴, ,
∴與軸交點,令,
得,
∴.
設(shè)為過, ,
∴,
∴.
()∵過作軸垂線交于,交拋物線于,
∵,
∴, ,
∵,
∴,
∴,∴,
∴,
∵,
∴,
又∵,
∴,
∵,
∴,∴,
∵,
∴
,
,
,
, ,
∵,
∴.
()①在()的條件下, ,∴,
設(shè),∵旋轉(zhuǎn),∴,
若,
則,
∵,
∴,
∴,∴,
∴.
②由①可知,當(dāng)為時,
,且相似比為,
∴,
∴,
∴當(dāng)旋轉(zhuǎn)到所在直線上時, 最小,即為長度,
∵, ,
∴,
∴的最小值為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點B(m,2).
(1)求反比例函數(shù)的關(guān)系式;
(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個,比賽結(jié)束后隨機抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖的一部分.
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計表中,m= ,n= ,并補全條形統(tǒng)計圖.
(2)扇形統(tǒng)計圖中“C組”所對應(yīng)的圓心角的度數(shù)是 .
(3)若該校共有900名學(xué)生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC⊥BC,BD⊥AD,AC 與BD 交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A點坐標(biāo)為(5,0),直線y=kx+b(b>0)與y軸交于點B,∠BCA=60°,連接AB,∠α=105°,則直線y=kx+b的表達(dá)式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強環(huán)境保護(hù)意識,在環(huán)保局工作人員指導(dǎo)下,若干名“環(huán)保小衛(wèi)士” 組成了“控制噪聲污染”課題學(xué)習(xí)研究小組.在“世界環(huán)境日”當(dāng)天,該小組抽樣 調(diào)查了全市 40 個噪聲測量點在某時刻的噪聲聲級(單位:dB),將調(diào)查的數(shù)據(jù)進(jìn)行
處理(設(shè)所測數(shù)據(jù)均為正整數(shù)),得頻數(shù)分布表如下:
組別 | 噪聲聲級分組 | 頻數(shù) | 頻率 |
1 | 44.5~59.5 | 4 | 0.1 |
2 | 59.5~74.5 | a | 0.2 |
3 | 74.5~89.5 | 10 | 0.25 |
4 | 89.5~104.5 | b | c |
5 | 104.5~119.5 | 6 | 0.15 |
合計 | 40 | 1.00 |
根據(jù)表中提供的信息解答下列問題:
(1)頻數(shù)分布表中的a= , b= , c= ;
(2)補充完整頻數(shù)分布直方圖;
(3)如果全市共有 300 個測量點,那么在這一時刻噪聲聲級小于 75dB 的測量點約有多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人同時從家出發(fā),勻速騎共享單車到達(dá)公園入口,然后一同勻速步行到達(dá)驛站,到達(dá)驛站后小明的爸爸立即又騎共享單車按照來時騎行速度原路返回,在公園入口處改為步行,并按來時步行速度原路回家,小明到達(dá)驛站后逗留了10分鐘之后騎車回家,爸爸在鍛煉過程中離出發(fā)地的路程與出發(fā)的時間的函數(shù)關(guān)系如圖.
(1)圖中m=_____,n=_____;(直接寫出結(jié)果)
(2)小明若要在爸爸到家之前趕上,問小明回家騎行速度至少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長為3的等邊三角形,點D是邊BC上的一點,且BD=1,以AD為邊作等邊△ADE,過點E作EF∥BC,交AC于點F,連接BF,則下列結(jié)論中①△ABD≌△BCF;②四邊形BDEF是平行四邊形;③S四邊形BDEF=;④S△AEF=.其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com