(2013•大慶模擬)小明在玩一副三角板時(shí)發(fā)現(xiàn):含45°角的直角三角板的斜邊可與含30°角的直角三角板的較長(zhǎng)直角邊完全重合(如圖①).即△C′DA′的頂點(diǎn)A′、C′分別與△BAC的頂點(diǎn)A、C重合.現(xiàn)在,他讓△C′DA′固定不動(dòng),將△BAC通過(guò)變換使斜邊BC經(jīng)過(guò)△C′DA′的直角頂點(diǎn)D.
(1)如圖②,將△BAC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)角度α(0°<α<180°),使BC邊經(jīng)過(guò)點(diǎn)D,則α=
15
15
°.
(2)如圖③,將△BAC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使BC邊經(jīng)過(guò)點(diǎn)D.試說(shuō)明:BC∥A′C′.
(3)如圖④,若AB=
2
,將△BAC沿射線A′C′方向平移m個(gè)單位長(zhǎng)度,使BC邊經(jīng)過(guò)點(diǎn)D,求m的值.
分析:(1)根據(jù)α=∠A′C′A=∠DCA′-∠BCA,進(jìn)而求出答案即可;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠CAC′=∠BAH,進(jìn)而得出∠CAC′=∠C,即可得出答案;
(3)根據(jù)銳角三角函數(shù)的關(guān)系求出AC,HC以及HC′的長(zhǎng),進(jìn)而得出答案.
解答:解:(1)如圖②,α=∠A′C′A=45°-30°=15°;
故答案為:15;

(2)如圖③,過(guò)點(diǎn)A作AH⊥BC,垂足為H,
∵∠CAC′+∠CAH=∠CAH+∠BAH=90°,
∴∠CAC′=∠BAH,
在Rt△ABC中,
∵AH⊥BC,
∴∠HAC+∠C=90°,
∵∠BAH+∠HAC=90°,
∴∠C=∠BAH,
∴∠CAC′=∠C,
∴BC∥A′C′;

(3)如圖④,過(guò)點(diǎn)D作DH⊥AC,垂足為H,
∵AB=
2
,
∴AC=A′C′=
2
×
3
=
6
,
∴HC′=DH=
1
2
A′C′=
6
2

∴HC=
6
2
×
3
=
3
2
2
,
所以m的值為:HC-HC′=
3
2
2
-
6
2
點(diǎn)評(píng):此題主要考查了旋轉(zhuǎn)的性質(zhì)以及銳角三角函數(shù)的關(guān)系等知識(shí),根據(jù)已知得出HC以及HC′的長(zhǎng)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大慶模擬)面積為0.8m2的正方形地磚,它的邊長(zhǎng)介于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大慶模擬)下列四個(gè)式子中,字母a的取值可以是一切實(shí)數(shù)的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大慶模擬)已知正五邊形的對(duì)稱軸是過(guò)任意一個(gè)頂點(diǎn)與該頂點(diǎn)對(duì)邊中點(diǎn)的直線.如圖所示的正五邊形中相鄰兩條對(duì)稱軸所夾銳角α的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大慶模擬)“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.--蘇科版《數(shù)學(xué)》九年級(jí)(下冊(cè))P21”參考上述教材中的話,判斷方程x2-2x=
1
x
-2實(shí)數(shù)根的情況是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•大慶模擬)有六個(gè)面,且主視圖、俯視圖和左視圖都相同的幾何體是
正方體(立方體)
正方體(立方體)

查看答案和解析>>

同步練習(xí)冊(cè)答案