【題目】如圖,在以點O為原點的直角坐標系中,一次函數(shù)y=﹣x+1的圖象與x軸交于A,與y軸交于點B,求:

(1)AOB面積= ;

(2)AOB內(nèi)切圓半徑=

(3)點C在第二象限內(nèi)且為直線AB上一點,OC=AB,反比例函數(shù)的圖象經(jīng)過點C,求k的值.

【答案】(1)1(2)(3)k=﹣

【解析】

試題分析:(1)利用一次函數(shù)的解析式分別求出A、B的坐標后,即可求出OB、OA的長度,從而可求出AOB的面積;

(2)設AOB內(nèi)切圓的圓心為M,M與OA、OB、AB分別切于E、F、G,連接OE、OF,利用切線長定理可知BF=BG,AE=AG,設半徑為r,利用AG+BG=AB列出方程即可求出r的值;

(3)利用AB的長度求出OC的長度,過點C作CDx軸于點D,設點C(a,﹣a+1),利用勾股定理即可求出a的值,從而求出點C的坐標,將點C代入y=即可求出k的值.

試題解析:(1)令x=0代入y=﹣a+1

y=1,

OB=1,

令y=0代入y=﹣x+1,

x=2,

OA=2,

S=OAOB=1;

(2)設AOB內(nèi)切圓的圓心為M,

M與OA、OB、AB分別切于E、F、G,

連接OE、OF,如圖1,

∵∠OEM=MFO=FOE=90°,

四邊形MFOE是矩形,

ME=MF,

矩形MFOE是正方形,

M的半徑為r,

MF=ME=r,

由切線長定理可知:BF=BG=1﹣r,

AE=AG=2﹣r,

由勾股定理可求得:AB==,

AG+BG=AB,

2﹣r+1﹣r=,

r=

(3)過點C作CDx軸于點D,如圖2,

OC=AB,

OC=,

點C在直線AB上,

設C(a,﹣ a+1)(a0),

OD=a,CD=﹣a+1,

由勾股定理可知:CD2+OD2=OC2,

a2+(﹣a+1)2=,

a=﹣或a=1(舍去)

C的坐標為(﹣,),

把C(﹣,)代入y=

k=﹣

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】巴黎與東京的時差為-8,帶正號的數(shù)表示同一時間比東京早的時間數(shù).如果東京現(xiàn)在的時間是13:20.那么巴黎現(xiàn)在的時間是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,AB=AC,BDACDCEABE,BDCE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,C為直線l上的一點,AB為直線l外的兩點,過AB兩點分別作直線l的垂線,垂足分別為點D、E,連接BCAB,AB交直線l于點F,AC=BC,AD=CE.

求證:(1CE=BE+DE

2ACBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3m5,3n8,則32m+n_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB30°,點P在∠AOB的內(nèi)部,P1P關于OA對稱,P2P關于OB對稱,則△P1OP2

A. 30°角的直角三角形 B. 頂角是30的等腰三角形

C. 等邊三角形 D. 等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一組數(shù)據(jù):10,8,6,10,8,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10.分組后頻數(shù)為4的一組為(  )

A. 5.5~7.5 B. 7.5~9.5 C. 9.5~11.5 D. 11.5~13.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(14分)探究與發(fā)現(xiàn):如圖①,在RtABC中,∠BAC=90°,AB=AC,點D在底邊BC上,AE=AD,連結DE.

(1)當∠BAD=60°時,求∠CDE的度數(shù);

(2)當點DBC (點B、C除外) 上運動時,試猜想并探究∠BAD與∠CDE的數(shù)量關系;

(3)深入探究:若∠BAC≠90°,試就圖②探究∠BAD與∠CDE的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一定能將三角形的面積分成相等的兩部分的是三角形的( 。

A. 高線 B. 中線 C. 角平分線 D. 都不是

查看答案和解析>>

同步練習冊答案