在邊長為6的菱形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C向終點(diǎn)C運(yùn)動(dòng),連接DM交AC于點(diǎn)N.
(1)如圖1,當(dāng)點(diǎn)M在AB邊上時(shí),連接BN

①試說明:;
②若∠ABC=60°,AM=4,求點(diǎn)M到AD的距離.
(2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動(dòng)所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時(shí),△ADN為等腰三角形.

(1)①見解析;②;(2)x為6或18-或12時(shí),△ADN為等腰三角形.

解析試題分析:(1)根據(jù)菱形的四條邊都相等可得AB=AD,對(duì)角線平分一組對(duì)角可得∠BAN=∠DAN,然后利用“邊角邊”證明;
(2)根據(jù)有一個(gè)角是直角的菱形的正方形判斷出四邊形ABCD是正方形,再根據(jù)正方形的性質(zhì)點(diǎn)M與點(diǎn)B、C重合時(shí)△ADN是等腰三角形;AN=AD時(shí),利用勾股定理列式求出AC,再求出CN,然后求出△ADN和△CMN相似,利用相似三角形對(duì)應(yīng)邊成比例列式求出CM,然后求出BM即可得解.
試題解析:
(1)證明:在菱形ABCD中,AB=AD,∠BAN=∠DAN,
在△ABN和△ADN中,

∴△ABN≌△ADN(SAS);
(2)∵∠ABC=90°,
∴菱形ABCD是正方形,
∴當(dāng)x=6時(shí),點(diǎn)M與點(diǎn)B重合,AN=DN,△ADN為等腰三角形,
當(dāng)x=12時(shí),點(diǎn)M與點(diǎn)C重合,AD=DN,△ADN為等腰三角形,
當(dāng)AN=AD時(shí),在Rt△ACD中,
CN=AC-AN=,
∵正方形ABCD的邊BC∥AD,
∴△ADN∽△CMN,
,

解得CM=,
∴BM=BC-AM=6-()=12- ,
x=AB+BM=6+12- =18- ,
綜上所述,x為6或18-或12時(shí),△ADN為等腰三角形.
考點(diǎn):四邊形綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知△ABC是等腰直角三角形,∠A=90°,點(diǎn)D是腰AC上的一個(gè)動(dòng)點(diǎn),過C作CE垂直于BD的延長線,垂足為E.

(1)若BD是AC邊上的中線,如圖1,求的值;
(2)若BD是∠ABC的角平分線,如圖2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下面的材料:
小明遇到一個(gè)問題:如圖(1),在□ABCD中,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長線交射線CD于點(diǎn)G. 如果,求的值.

他的做法是:過點(diǎn)E作EH∥AB交BG于點(diǎn)H,則可以得到△BAF∽△HEF.
請(qǐng)你回答:(1)AB和EH的數(shù)量關(guān)系為    ,CG和EH的數(shù)量關(guān)系為    ,的值為    .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為    (用含a的代數(shù)式表示).

(3)請(qǐng)你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點(diǎn)E是BC延長線上一點(diǎn),AE和BD相交于點(diǎn)F. 如果,那么的值為    (用含m,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,正△ABC中,∠ADE=60°,

(1)求證:△ABD∽△DCE;
(2)若BD=2,CD=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,梯形ABCD是一個(gè)攔河壩的截面圖,壩高為6米.背水坡AD的坡角,為了提高河壩的抗洪能力,防汛指揮部決定加固河壩,若壩頂CD加寬0.8米,新的背水坡EF的坡度為1:1.4.河壩總長度為500米.

(1)求完成該工程需要多少立方米方土?
(2)某工程隊(duì)在加固600立方米土后,采用新的加固模式,這樣每天加固方數(shù)是原來的2倍,結(jié)果只用11天完成了大壩加固的任務(wù).請(qǐng)你求出該工程隊(duì)原來每天加固多少立方米土?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,對(duì)角線AC,BD相交于點(diǎn)E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面積是54.求證:AC⊥BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上一點(diǎn)(不與點(diǎn)A、B重合),連結(jié)CO并延長CO交⊙O于點(diǎn)D,連結(jié)AD.

(1)求弦長AB的長度;(結(jié)果保留根號(hào));
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線l分別與x軸、y軸交于A、B兩點(diǎn),與雙曲線(a≠0,x>0)分別交于D、E兩點(diǎn).

(1)若點(diǎn)D的坐標(biāo)為(4,1),點(diǎn)E的坐標(biāo)為(1,4):
① 分別求出直線l與雙曲線的解析式;(3分)
② 若將直線l向下平移m(m>0)個(gè)單位,當(dāng)m為何值時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn)?(4分)
(2)假設(shè)點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)D為線段AB的n等分點(diǎn),請(qǐng)直接寫出b的值.(2分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體是(       )

A.三棱錐 B.三棱柱 C.四棱錐 D.四棱柱

查看答案和解析>>

同步練習(xí)冊(cè)答案