【題目】如圖在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),且、滿足
點(diǎn)表示的數(shù)為________;點(diǎn)表示的數(shù)為________.
若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,請在數(shù)軸上找一點(diǎn),使,則點(diǎn)表示的數(shù)________.
若在原點(diǎn)處放一擋板,一小球甲從點(diǎn)處以個單位/秒的速度向左運(yùn)動;同時另一小球乙從點(diǎn)處以個單位/秒的速度也向左運(yùn)動,在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動,設(shè)運(yùn)動的時間為(秒),請分別表示出甲、乙兩小球到原點(diǎn)的距離(用含的代數(shù)式表示).
【答案】(1)-5,7;(2)4或13;(3)當(dāng)0≤t≤3.5時,小球到原點(diǎn)的距離為7-2t,當(dāng)t>3.5時小球到原點(diǎn)的距離為2t-7.
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)列方程求出a、b的值,從而得解;
(2)根據(jù)兩點(diǎn)間距離的表示列出絕對值方程,然后求解即可;
(3)甲小球根據(jù)數(shù)軸上的數(shù)向左減表示即可,乙小球分向左與向右移動兩個部分分別列式表示即可.
解:(1)由題意得,a+5=0,b-7=0,
解得a=-5,b=7,
所以,點(diǎn)A表示-5,點(diǎn)B表示7;
(2)設(shè)點(diǎn)C表示x,由題意得,|-5-x|=3|7-x|,
所以,5+x=3(7-x)或5+x=-3(7-x),
解得x=4,或x=13,
所以,點(diǎn)C表示的數(shù)為4或13;
(3)甲:∵小球甲從點(diǎn)A處以1個單位/秒的速度向左運(yùn)動,
∴甲到原點(diǎn)的距離為|-5-t|=5+t,
∵小球乙從點(diǎn)B處以2個單位/秒的速度也向左運(yùn)動,
∴乙到達(dá)原點(diǎn)的時間為7÷2=3.5,
∴當(dāng)0≤t≤3.5時,小球到原點(diǎn)的距離為7-2t,
當(dāng)t>3.5時小球到原點(diǎn)的距離為2t-7.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于, 兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)和是反比例函數(shù)圖象上兩點(diǎn),若,求的值;
(3)若M(x1,y1)和N(x2,y2)兩點(diǎn)在直線AB上,如圖2所示,過M、N兩點(diǎn)分別作y軸的平行線交雙曲線于E、F,已知﹣3<x1<0,x2>1,請?zhí)骄慨?dāng)x1、x2滿足什么關(guān)系時,MN∥EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ABC,求證:∠A+∠B+∠C=180°.
通過畫平行線,將∠A、∠B、∠C作等角代換,使各角之和恰為一平角,依輔助線不同而得多種證法.
證法1:如圖1,延長BC到D,過C畫CE∥BA.
∵BA∥CE(作圖2所知),
∴∠B=∠1,∠A=∠2(兩直線平行,同位角、內(nèi)錯角相等).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定義),
∴∠A+∠B+∠ACB=180°(等量代換).
如圖3,過BC上任一點(diǎn)F,畫FH∥AC,F(xiàn)G∥AB,這種添加輔助線的方法能證明∠A+∠B+∠C=180°嗎?請你試一試.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上、、三點(diǎn)所代表的數(shù)分別是、、,且.若下列選項(xiàng)中,有一個表示、、三點(diǎn)在數(shù)軸上的位置關(guān)系,則此選項(xiàng)為何?( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D是 AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格中,三角形ABC的頂點(diǎn)均落在格點(diǎn)上.
(1)將△ABC繞點(diǎn)O順時針旋轉(zhuǎn)90°后,得到△A1B1C1 . 在網(wǎng)格中畫出△A1B1C1;
(2)求線段OA在旋轉(zhuǎn)過程中掃過的圖形面積;(結(jié)果保留π)
(3)求∠BCC1的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖中的AB所在的直線上建一圖書室,本社區(qū)有兩所學(xué)校所在的位置在點(diǎn)C和點(diǎn)D處,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.Okm,試問:圖書室E應(yīng)該建在距點(diǎn)A多少km處,才能使它到兩所學(xué)校的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個長為、寬為的長方形(其中,均為正數(shù),且),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖方式拼成一個大正方形.
如圖是一個長為、寬為的長方形(其中,均為正數(shù),且),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖方式拼成一個大正方形.
你認(rèn)為圖中大正方形的邊長為________;小正方形(陰影部分)的邊長為________.(用含、的代數(shù)式表示)
仔細(xì)觀察圖,請你寫出下列三個代數(shù)式:,,所表示的圖形面積之間的相等關(guān)系,并選取適合、的數(shù)值加以驗(yàn)證.
已知,.求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1) (2)
(3)(-2)-(+4.7)-(-0.4)+ (-3.3) (4)
(5) (6)(-+)×(-36)
(7) (8)—(用簡便方法計算)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com