(2009•陜西)如圖,在銳角△ABC中,AB=4,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是   
【答案】分析:從已知條件結(jié)合圖形認真思考,通過構(gòu)造全等三角形,利用三角形的三邊的關(guān)系確定線段和的最小值.
解答:解:如圖,在AC上截取AE=AN,連接BE.
∵∠BAC的平分線交BC于點D,
∴∠EAM=∠NAM,
在△AME與△AMN中,,
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE.
∵BM+MN有最小值.
當BE是點B到直線AC的距離時,BE⊥AC,
又AB=4,∠BAC=45°,此時,△ABE為等腰直角三角形,
∴BE=4,
即BE取最小值為4,
∴BM+MN的最小值是4.
故答案為:4.
點評:本題考查了軸對稱的應用.易錯易混點:解此題是受角平分線啟發(fā),能夠通過構(gòu)造全等三角形,把BM+MN進行轉(zhuǎn)化,但是轉(zhuǎn)化后沒有辦法把兩個線段的和的最小值轉(zhuǎn)化為點到直線的距離而導致錯誤.
規(guī)律與趨勢:構(gòu)造法是初中解題中常用的一種方法,對于最值的求解是初中考查的重點也是難點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•陜西)如圖,在平面直角坐標系中,OB⊥OA,且OB=2OA,點A的坐標是(-1,2)
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的表達式;
(3)連接AB,在(2)中的拋物線上求出點P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中數(shù)學 來源:2009年陜西省中考數(shù)學試卷(解析版) 題型:解答題

(2009•陜西)如圖,在平面直角坐標系中,OB⊥OA,且OB=2OA,點A的坐標是(-1,2)
(1)求點B的坐標;
(2)求過點A、O、B的拋物線的表達式;
(3)連接AB,在(2)中的拋物線上求出點P,使得S△ABP=S△ABO

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2009•陜西)如圖,AB∥CD,直線EF分別交AB、CD于點E、F,∠1=47°,則∠2的大小是    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年陜西省中考數(shù)學試卷(解析版) 題型:選擇題

(2009•陜西)如圖,圓與圓之間不同的位置關(guān)系有( )

A.2種
B.3種
C.4種
D.5種

查看答案和解析>>

同步練習冊答案