如圖,在⊙O中,AB為直徑.AB⊥CD,且CD=,BD=,則AB的長為( )

A.2
B.3
C.4
D.5
【答案】分析:首先連接OD,由在⊙O中,AB為直徑.AB⊥CD,根據(jù)垂徑定理,即可求得DE的長,然后由勾股定理,求得BE的長,然后再利用勾股定理,借助于方程即可求得答案.
解答:解:∵連接OD,
∵在⊙O中,AB為直徑.AB⊥CD,
∴DE=CD=×2=,
∴在Rt△BDE中,
DE===1,
設OB=x,
∴OE=x-1,
在Rt△ODE中,OA2=OE2+BE2,
∴x2=2+(x-1)2,
解得:x=,
∴OA=
∴AB=3.
故選B.
點評:此題考查了垂徑定理、勾股定理的知識.此題難度適中,解題的關鍵是注意方程思想與數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB>AC,E為BC邊的中點,AD為∠BAC的平分線,過E作AD的平行線,交AB于F,交CA的延長線于G.
求證:BF=CG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,D為BC邊上一點,且∠BAD=30°,若AD=DE,∠EDC=33°,則∠DAE的度數(shù)為
72
72
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,D是△ABC內一點,且BD=DC.求證:∠ABD=∠ACD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=BC,∠ABC=90°,D是BC的中點,且它關于AC的對稱點是D′,BD′=
5
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,D點是BC的中點,DE⊥AB于E點,DF⊥AC于F點,則圖中全等三角形共有
3
3
對.

查看答案和解析>>

同步練習冊答案