【題目】2017年4月20日,成都舉行了“建城市森林,享低碳生活”的垃圾分類推進(jìn)工作啟動儀式,在成都設(shè)置有專門的垃圾存放點,做到日產(chǎn)日清。在平面直角坐標(biāo)系中xOy中,A,B,C三個垃圾存放點的位置如圖1所示,點A在原點,,.某同學(xué)利用周末時間調(diào)查了這三個存放點的垃圾量,并繪制了如下尚不完整的扇形統(tǒng)計圖(如圖2)。
(1)若C處的垃圾存放量為320千克,求A處的垃圾存放量。
(2)現(xiàn)需要A,C兩處的垃圾分別沿道路AB,CB都運到B處,若點B的橫坐標(biāo)為50,平面直角坐標(biāo)系中一個單位長度所表示的實際距離是1米,每運送1千克垃圾1米的費用為0.005元,求本次運送垃圾的總費用。(結(jié)果保留整數(shù),參考數(shù)據(jù):)
【答案】(1)A處垃圾存放量為80千克;(2)總費用為312元
【解析】
(1)利用扇形統(tǒng)計圖以及條形統(tǒng)計圖可得出C處垃圾量以及所占百分比,進(jìn)而求出垃圾總量,進(jìn)而得出A處垃圾量;
(2)利用銳角三角函數(shù)得出AB,BC的長,進(jìn)而得出運垃圾所需的費用.
(1)320÷50%×(1-50%-37.5%)=80(千克)
∴A處的垃圾存放量為80千克;
(2)由題意可知AB=100米,BC=100米,
AB的運費為80×100×0.005=40(元),
BC的運費為170×320×0.005=272(元),
則本次運送垃圾的總費用為40+272=312(元).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1和∠2互為補角,∠A=∠D.求證:AB∥CD.
證明:∵∠1與∠CGD是對頂角,
∴∠1=∠CGD(______).
又∠1和∠2互為補角(已知),
∴∠CGD和∠2互為補角,
∴AE∥FD(_________),
∴∠A=∠BFD(_______).
∵∠A=∠D(已知),
∴∠BFD=∠D(_______),
AB∥CD(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .點E為線段BD上任意一點(點E與點B,D不重合),過點E作EF∥CD,與BC相交于點F,連接CE.設(shè)BE=x,y= .
(1)求BD的長;
(2)如果BC=BD,當(dāng)△DCE是等腰三角形時,求x的值;
(3)如果BC=10,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD.我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“震災(zāi)無情人有情”.民政局將全市為四川受災(zāi)地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件.
(1)求打包成件的帳篷和食品各多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批帳篷和食品全部運往受災(zāi)地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.則民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來.
(3)在第(2)問的條件下,如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元.民政局應(yīng)選擇哪種方案可使運輸費最少?最少運輸費是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】看圖填空:
(1)∠1和∠3是直線________被直線____所截得的______;
(2)∠1和∠4是直線_________被直線____所截得的______;
(3)∠B和∠2是直線_________被直線_____所截得的______;
(4)∠B和∠4是直線_________被直線_____所截得的_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C,D,E將線段AB分成2:3:4:5四部分,M,P,Q,N分別是AC,CD,DE,EB的中點,且MN=21,求線段PQ的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若則稱與是關(guān)于1的平衡數(shù)。
(1)5與______是關(guān)于1的平衡數(shù);
(2)與________是關(guān)于1的平衡數(shù)(用含的代數(shù)式表示);
(3)若判斷與是否是關(guān)于1的平衡數(shù),并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com