【題目】如圖所示,在矩形ABCD中,已知AB=24,BC=12,點(diǎn)E沿BC邊從點(diǎn)B開始向點(diǎn)C以每秒2個(gè)單位長度的速度運(yùn)動(dòng);點(diǎn)F沿CD邊從點(diǎn)C開始向點(diǎn)D以每秒4個(gè)單位長度的速度運(yùn)動(dòng).如果E,F(xiàn)同時(shí)出發(fā),用t(0≤t≤6)秒表示運(yùn)動(dòng)的時(shí)間.

請解答下列問題:

(1)當(dāng)t為何值時(shí),△CEF是等腰直角三角形?

(2)當(dāng)t為何值時(shí),以點(diǎn)E,C,F(xiàn)為頂點(diǎn)的三角形與△ACD相似?

【答案】(1)當(dāng)t=2時(shí),△CEF是等腰直角三角形;(2)當(dāng)t為3或1.2時(shí),以點(diǎn)E,C,F(xiàn)為頂點(diǎn)的三角形與△ACD相似.

【解析】

(1)由題意可知BE=2t,CF=4t,CE=12-2t.再由CEF是等腰直角三角形,∠ECF是直角,列出方程12-2t=4t,解得t值即可;(2)根據(jù)題意,可分EFC∽△ACDFEC∽△ACD兩種情況求t值即可.

(1)由題意可知BE=2t,CF=4t,CE=12-2t.

因?yàn)?/span>CEF是等腰直角三角形,∠ECF是直角,所以CE=CF,

所以12-2t=4t,解得t=2,

所以當(dāng)t=2時(shí),CEF是等腰直角三角形.

(2)根據(jù)題意,可分為兩種情況:

①若EFC∽△ACD,則,

所以.解得t=3,

即當(dāng)t=3時(shí),EFC∽△ACD.

②若FEC∽△ACD,則,

所以.解得t=1.2,

即當(dāng)t=1.2時(shí),FEC∽△ACD.

因此,當(dāng)t31.2時(shí),以點(diǎn)E,C,F(xiàn)為頂點(diǎn)的三角形與ACD相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+(2﹣a)x﹣2(a>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C.給出下列結(jié)論:

①在a>0的條件下,無論a取何值,點(diǎn)A是一個(gè)定點(diǎn);

②在a>0的條件下,無論a取何值,拋物線的對稱軸一定位于y軸的左側(cè);

③y的最小值不大于﹣2;

④若AB=AC,則a=

其中正確的結(jié)論有( 。﹤(gè)

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,A=30°,在同一平面內(nèi),以對角線BD為底邊作頂角為120°的等腰三角形BDE,則EBC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,,分別是,的中點(diǎn),是對角線,延長線于.若四邊形是菱形,則四邊形是(

A. 平行四邊形 B. 矩形

C. 菱形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:我們學(xué)過一次函數(shù)的圖象的平移,如:將一次函數(shù)的圖象沿軸向右平移個(gè)單位長度可得到函數(shù)的圖象,再沿軸向上平移個(gè)單位長度,得到函數(shù)的圖象;如果將一次函數(shù)的圖象沿軸向左平移個(gè)單位長度可得到函數(shù)的圖象,再沿軸向下平移個(gè)單位長度,得到函數(shù)的圖象.類似地,形如的函數(shù)圖象的平移也滿足此規(guī)律.

仿照上述平移的規(guī)律,解決下列問題:

1)將一次函數(shù)的圖象沿軸向右平移個(gè)單位長度,再沿軸向上平移個(gè)單位長度,得到函數(shù)________的圖象(不用化簡);

2)將的函數(shù)圖象沿y軸向下平移個(gè)單位長度,得到函數(shù)________________的圖象,再沿軸向左平移個(gè)單位長度,得到函數(shù)_________________的圖象(不用化簡);

3)函數(shù)的圖象可看作由的圖象經(jīng)過怎樣的平移變換得到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】晨光文具店有一套體育用品:1個(gè)籃球,1個(gè)排球和1個(gè)足球,一套售價(jià)300元,也可以單獨(dú)出售,小攀同學(xué)共有50元、20元、10元三種面額鈔票各若干張.如果單獨(dú)出售,每個(gè)球只能用到同一種面額的鈔票去購買.若小面額的錢的張數(shù)恰等于另兩種面額錢張數(shù)的乘積,那么所有可能中單獨(dú)購買三個(gè)球中所用到的錢最少的一個(gè)球是___________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形是矩形,,。動(dòng)點(diǎn)P、Q分別同時(shí)從A、C出發(fā),點(diǎn)P以3cm/s的速度向D移動(dòng),直到D為止,Q以2cm/s的速度向B移動(dòng).

(1)P、Q兩點(diǎn)從出發(fā)開始幾秒后,四邊形ABQP的面積是矩形面積的?

(2)P、Q從開始出發(fā)幾秒后,?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)m的值;

(3)在給定的直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;

(4)根據(jù)圖象,寫出當(dāng)y0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運(yùn)動(dòng)、娛樂、上網(wǎng)等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中,一共調(diào)查了   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有1500名學(xué)生,估計(jì)愛好運(yùn)動(dòng)的學(xué)生有   人;

(4)在全校同學(xué)中隨機(jī)選取一名學(xué)生參加演講比賽,用頻率估計(jì)概率,則選出的恰好是愛好閱讀的學(xué)生的概率是   

查看答案和解析>>

同步練習(xí)冊答案