【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點P的鉛直高度.(結果精確到0.1米)
(2)求此人從所在位置點P走到建筑物底部B點的路程(結果精確到0.1米)
(測傾器的高度忽略不計,參考數據:tan53°≈,tan63.5°≈2)
【答案】(1)此人所在P的鉛直高度約為14.3米;(2)從P到點B的路程約為127.1米
【解析】分析:(1)過P作PF⊥BD于F,作PE⊥AB于E,設PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的長.
詳解:過P作PF⊥BD于F,作PE⊥AB于E,
∵斜坡的坡度i=5:12,
設PF=5x,CF=12x,
∵四邊形BFPE為矩形,
∴BF=PEPF=BE.
在RT△ABC中,BC=90,
tan∠ACB=,
∴AB=tan63.4°×BC≈2×90=180,
∴AE=AB-BE=AB-PF=180-5x,
EP=BC+CF≈90+120x.
在RT△AEP中,
tan∠APE=,
∴x=,
∴PF=5x=.
答:此人所在P的鉛直高度約為14.3米.
由(1)得CP=13x,
∴CP=13×37.1,BC+CP=90+37.1=127.1.
答:從P到點B的路程約為127.1米.
科目:初中數學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數稱為“三角形數”,而把1,4,9,16…這樣的數稱為“正方形數”.從圖中可以發(fā)現,任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.下列等式中,符合這一規(guī)律的是( 。
A.13=3+10B.25=9+16C.36=15+21D.49=18+31
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著人們經濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛入.如圖,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在有些情況下,不需要計算出結果也能把絕對值符號去掉。例如:|6+7|= 6+7 ;|6—7|=7- 6;|7-6|=7- 6 ;|―6―7|=6+7;根據上面的規(guī)律,把下列各式寫成去掉絕對值符號的形式:
(1)|7-21|=______;
(2)||=_______;
(3)||=________;
(4)用合理的方法計算:||+||-||.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,矩形ABCD的面積為10cm2,它的兩條對角線交于點O1,以AB、AO1為鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對角線交于點O2,同樣以AB、AO2為鄰邊作平行四邊形ABC2O2,…,依此類推,則平行四邊形ABC5O5的面積為( )
A. 1cm2B. 2cm2C. cm2D. cm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點,,在同一直線上,射線在的內部,,分別是,的平分線,請?zhí)骄?/span>與的數量關系.
(1)當,時,求出和的度數,并寫出他們的數量關系;
(2)一般情況下,寫出和之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知整數a1、a2、a3、a4、……滿足下列條件:a1=-1,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,……,an+1=-|an+n|(n為正整數)依此類推,則a2019的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有以下四個命題:
①反比例函數y=,當x>0時,y隨x的增大而增大;
②拋物線y=x2﹣2x+2與兩坐標軸無交點;
③平分弦的直徑垂直于弦,且平分弦所對的。
④有一個角相等的兩個等腰三角形相似.
其中正確命題的個數為( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com