【題目】如果關(guān)于x的一元二次方程(k﹣1)x2﹣2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,那么k的取值范圍是

【答案】k<2且k≠1
【解析】解:根據(jù)題意得k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0, 解得:k<2且k≠1.
所以答案是:k<2且k≠1.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一元二次方程的定義(只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程為一元二次方程),還要掌握求根公式(根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列不能能組成三角形的線段是(

A. 5cm,3cm,6cmB. 3cm,4cm,5cmC. 2cm,4cm,6cmD. 5cm,6cm,9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

(1)作ABC關(guān)于點(diǎn)C成中心對稱的A1B1C1

(2)將A1B1C1向右平移4個(gè)單位,作出平移后的A2B2C2

(3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫出點(diǎn)P的坐標(biāo)(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市實(shí)施“限塑令”后,2008年大約減少塑料消耗約4萬噸.調(diào)查分析結(jié)果顯示,從2008年開始,五年內(nèi)該市因?qū)嵤跋匏芰睢倍鴾p少的塑料消耗量y(萬噸)隨若時(shí)間x(年)逐年成直線上升,y 與x之間的關(guān)系如圖所示.

(1)求y與x之間的關(guān)系式;

(2)請你估計(jì),該市2011年因?qū)嵤跋匏芰睢倍鴾p少的塑料消耗量為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

2)當(dāng)BDM為直角三角形時(shí),求的值.

3)“蛋線”在第四象限上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣7的相反數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某校“我的中國夢”演講比賽中,有9名學(xué)生參加比賽,他們決賽的最終成績各不相同,其中的一名學(xué)生要想知道自己能否進(jìn)入前5名,不僅要了解自己的成績,還要了解這9名學(xué)生成績的(
A.眾數(shù)
B.方差
C.平均數(shù)
D.中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABC的角平分線OB與角平分線OC相交于點(diǎn)O,過點(diǎn)O作MNBC,分別交AB、AC于點(diǎn)M、N.

(1)請寫出圖中所有的等腰三角形;

(2)若AB+AC=14,求AMN的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價(jià)格也在不斷下降,今年5月份A款汽車的售價(jià)比去年同期每輛降價(jià)1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.

(1)今年5月份A款汽車每輛售價(jià)多少萬元?

(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進(jìn)價(jià)7.5萬元,B款汽車每輛進(jìn)價(jià)為6萬元,公司預(yù)計(jì)用不多于105萬元且不少于99萬元的資金購進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?

(3)如果B款汽車每輛售價(jià)為8萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時(shí),哪種方案對公司更有利?

查看答案和解析>>

同步練習(xí)冊答案