【題目】如圖,在△ABC中,∠ABC=2∠C,∠BAC的平分線AD交BC于D,過B作BE⊥AD交AD于F,交AC于E.
(1)求證:△ABE為等腰三角形;
(2)已知AC=11,AB=6,求BD長.
【答案】(1)詳見解析;(2)5.
【解析】試題分析:(1)由垂直的定義得到由角平分線的定義得到∠EAF=∠BAF,根據(jù)三角形的內(nèi)角和得到∠AEF=∠ABF,得到AE=AB,于是得到結(jié)論;
(2)連接DE,根據(jù)等腰三角形的性質(zhì)得到AD垂直平分BE,得到BD=ED,由等腰三角形的性質(zhì)得到∠DEF=∠DBF,等量代換得到∠AED=∠ABD,于是得到結(jié)論.
試題解析:(1)證明:∵BE⊥AD,
又∵AD平分∠BAC,
∴∠EAF=∠BAF,
又∵在△AEF和△ABF中
∴∠AEF=∠ABF,
∴AE=AB,
∴△ABE為等腰三角形;
(2)連接DE,
∵AE=AB,AD平分∠BAC,
∴AD垂直平分BE,
∴BD=ED,
∴∠DEF=∠DBF,
∵∠AEF=∠ABF,
∴∠AED=∠ABD,
又∵∠ABC=2∠C,
∴∠AED=2∠C,
又∵△CED中,∠AED=∠C+∠EDC,
∴∠C=∠EDC,
∴EC=ED,
∴CE=BD.
∴BD=CE=ACAE=ACAB=116=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是( )
A.2
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(﹣4,5),并與y軸交于點(diǎn)C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)E是直線下方拋物線上的一個(gè)動(dòng)點(diǎn),求出△ACE面積的最大值;
(3)如圖2,若點(diǎn)M是直線x=﹣1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請直接寫出點(diǎn)M的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)O為邊AB的中點(diǎn),OD⊥BC于點(diǎn)D,AM⊥BC于點(diǎn)M,以點(diǎn)O為圓心,線段OD為半徑的圓與AM相切于點(diǎn)N.
(1)求證:AN=BD;
(2)填空:點(diǎn)P是⊙O上的一個(gè)動(dòng)點(diǎn), ①若AB=4,連結(jié)OC,則PC的最大值是;
②當(dāng)∠BOP=時(shí),以O(shè),D,B,P為頂點(diǎn)四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一組數(shù)據(jù):10,17,15,10,18,20,下列說法錯(cuò)誤的是( )
A.中位數(shù)是16
B.方差是
C.眾數(shù)是10
D.平均數(shù)是15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在暑假社會實(shí)踐活動(dòng)中,以每千克元的價(jià)格從批發(fā)市場購進(jìn)若干千克西瓜市場上去銷售,在銷售了千克之后,余下的打折全部售完.銷售金額(元)售出西瓜的千克數(shù)(千克)之間的關(guān)系如圖所示.請你根據(jù)圖像提供的信息完成以下問題:
()求降價(jià)前銷售金額(元)與售出西瓜(千克)之間的關(guān)系;
()小明這次社會實(shí)踐活動(dòng)賺了多少錢?
()若要使這次活動(dòng)賺元錢,問余下的西瓜應(yīng)打幾折銷售完?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一條直線上.求證:BD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形ABC有一外接圓,其中∠B=90°,AB>BC,今欲在 上找一點(diǎn)P,使得 = ,以下是甲、乙兩人的作法: 甲:⑴取AB中點(diǎn)D
⑵過D作直線AC的平行線,交 于P,則P即為所求
乙:⑴取AC中點(diǎn)E
⑵過E作直線AB的平行線,交 于P,則P即為所求
對于甲、乙兩人的作法,下列判斷何者正確?( )
A.兩人皆正確
B.兩人皆錯(cuò)誤
C.甲正確,乙錯(cuò)誤C
D.甲錯(cuò)誤,乙正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com