【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩間工廠了解情況,獲得如下信息: 信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品?
【答案】解:設(shè)甲工廠每天加工x件產(chǎn)品,則乙工廠每天加工1.5x件產(chǎn)品, 依題意得 ﹣ =10,
解得:x=40.
經(jīng)檢驗(yàn):x=40是原方程的根,且符合題意.所以1.5x=60.
答:甲工廠每天加工40件產(chǎn)品,乙工廠每天加工60件產(chǎn)品
【解析】如果設(shè)甲工廠每天加工x件產(chǎn)品,那么根據(jù)乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍,可知乙工廠每天加工1.5x件產(chǎn)品.然后根據(jù)等量關(guān)系:甲工廠單獨(dú)加工完成這批產(chǎn)品的天數(shù)﹣乙工廠單獨(dú)加工完成這批產(chǎn)品的天數(shù)=10列出方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 , …按如圖所示的方式放置.點(diǎn)A1 , A2 , A3 , …和點(diǎn)C1 , C2 , C3 , …分別在直線y=kx+b(k>0)和x軸上,已知點(diǎn)B1(1,1),B2(3,2),則Bn的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)實(shí)踐與操作:利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法);
①作AB的垂直平分線交AB于點(diǎn)D,連接CD;
②分別作∠ADC、∠BDC的平分線,交AC、BC于點(diǎn)E、F.
(2)求證:CE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】16位參加百米半決賽同學(xué)的成績(jī)各不相同,按成績(jī)?nèi)∏?/span>8位進(jìn)入決賽.如果小劉知道了自己的成績(jī)后,要判斷能否進(jìn)入決賽,其他15位同學(xué)成績(jī)的下列數(shù)據(jù)中,能使他得出結(jié)論的是( )
A. 平均數(shù) B. 眾數(shù)
C. 中位數(shù) D. 方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:△ABC在正方形網(wǎng)格中
(1)請(qǐng)畫出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)請(qǐng)畫出△ABC關(guān)于點(diǎn)O對(duì)稱的△A2B2C2;
(3)在直線MN上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫出△PAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】股民小張五買某公司股票1000股,每股14.80元,表為第二周星期一至星期五每日該股票漲跌情況
(1)星期三收盤時(shí),每股是多少元?
(2)本周內(nèi)最高價(jià)是每股多少元?最低價(jià)是每股多少元?
(3)已知小張買進(jìn)股票時(shí)付了成交額0.15%的手續(xù)費(fèi),賣出時(shí)付了成交額0.15%的手續(xù)費(fèi)和成交額0.1%的交易稅,如果小張?jiān)谛瞧谖迨毡P前將全部股票賣出,那么他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D為AC上一點(diǎn),且CD=CB,以BC為直徑作⊙O,交BD于點(diǎn)E,連接CE,過(guò)D作DF⊥AB于點(diǎn)F,∠BCD=2∠ABD.
(1)求證:AB是⊙O的切線;
(2)若∠A=60°,DF=,求⊙O的直徑BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC經(jīng)過(guò)平移后得到△DEF,下列結(jié)論:①AB∥DE;②AD=BE;③BC=EF;④∠ACB=∠DFE,其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)過(guò)點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)G,若AGAB=12,求AC的長(zhǎng);
(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com