【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N。
(1)求證:MN=AM+BN;
(2)若過點C在△ABC內作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關系?請說明理由。
【答案】(1)見解析;(2)MN=BN-AM
【解析】
試題分析:(1)根據同角的余角相等可得∠MAC=∠NCB,又∠AMC=∠CNB=90°,AC=BC,即可證得△AMC≌△CNB,從而可得AM=CN,MC=BN,即可得到結論;
(2)類似于(1)的方法,證得△AMC≌△CNB,從而有AM=CN,MC=BN,可推出AM、BN與MN之間的數量關系.
∵∠C=90°
∴∠MCA+∠BCN=90°
∵AM⊥MN,BN⊥MN
∴∠AMC=∠CNB=90°
∴∠MAC+∠MCA=90°
∴∠MAC=∠BCN
在△AMC和△CNB中
∠MAC=∠BCN
∠AMC=∠CMB,
AC=BC
∴△AMC≌△CNB
∴AM=CN,MC=BN
∴MN=MC+CN=AM+BN
(2)(7分)答: MN=BN-AM
證明:∵∠AMC=∠BNC=90°,
∴∠ACM+∠NCB=90°,
∠NCB+∠CBN=90°,
故∠ACM=∠CBN,
在△AMC和△CNB中,
∠ACM=∠CBN
∠AMC=∠BNC=90°
AC=BC,
∴△AMC≌△CNB,
∴CM =BN,
CN=AM,
∴MN=CM-CN=BN-AM,
∴MN=BN-AM。
科目:初中數學 來源: 題型:
【題目】已知y是x的函數,自變量x的取值范圍x>0,下表是y與x的幾組對應值
小騰根據學校函數的經驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數的圖象與性質進行了探究.
下面是小騰的探究過程,請補充完整:
(1)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;
(2)根據畫出的函數圖象,寫出:
①x=4對應的函數值y約為 ;
②該函數的一條性質: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數過(﹣2,4),(﹣4,4)兩點.
(1)求二次函數的解析式;
(2)將沿x軸翻折,再向右平移2個單位,得到拋物線,直線y=m(m>0)交于M、N兩點,求線段MN的長度(用含m的代數式表示);
(3)在(2)的條件下,、交于A、B兩點,如果直線y=m與、的圖象形成的封閉曲線交于C、D兩點(C在左側),直線y=﹣m與、的圖象形成的封閉曲線交于E、F兩點(E在左側),求證:四邊形CEFD是平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于點E,點F在AC上,BD=DF.
(1)求證:CF=EB.
(2)若AB=12,AF=8,求CF的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數的圖象上.
(1)求反比例函數的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數的圖象上,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com