【題目】如圖所示,直線AB和CD與直線MN相交.
(1)如圖①,EG平分∠BEF,FH平分∠DFE(平分的是一對(duì)同旁內(nèi)角),則∠1與∠2滿足________時(shí),AB∥CD;
(2)如圖②,EG平分∠MEB,FH平分∠DFE(平分的是一對(duì)同位角),則∠1與∠2滿足________時(shí),AB∥CD;
(3)如圖③,EG平分∠AEF,FH平分∠DFE(平分的是一對(duì)內(nèi)錯(cuò)角),則∠1與∠2滿足什么條件時(shí),AB∥CD?請(qǐng)說(shuō)明理由.
【答案】(1)∠1+∠2=90°;(2)∠1=∠2;(3)∠1=∠2,理由詳見(jiàn)解析.
【解析】
(1)根據(jù)角平分線定義得出∠BEF=2∠1,∠DFE=2∠2,∠1+∠2=90°時(shí),求出∠BEF+∠DFE=180°,根據(jù)平行線的判定推出即可.
(2)根據(jù)角平分線定義得出∠BEM=2∠1,∠DFE=2∠2,求出∠BEM=∠DFE,根據(jù)平行線的判定推出即可.
(3)根據(jù)角平分線定義得出∠AEF=2∠1,∠DFE=2∠2,求出∠AEF=∠DFE,根據(jù)平行線的判定推出即可.
解:(1)∠1+∠2=90°時(shí),AB∥CD,
理由是:EG平分∠BEF,FH平分∠DFE,
∴∠BEF=2∠1,∠DFE=2∠2,
∵∠1+∠2=90°,
∴∠BEF+∠DFE=180°,
∴AB∥CD,
故答案為:∠1+∠2=90°.
(2)∠1=∠2,
理由是:EG平分∠BEM,FH平分∠DFE,
∴∠BEM=2∠1,∠DFE=2∠2,
∵∠1=∠2,
∴∠BEM=∠DFE,
∴AB∥CD,
故答案為:∠1=∠2.
(3)∠1=∠2,
理由是:EG平分∠AEF,FH平分∠DFE,
∴∠AEF=2∠1,∠DFE=2∠2,
∵∠1=∠2,
∴∠AEF=∠DFE,
∴AB∥CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AB=AC,在△ABC內(nèi)求作一點(diǎn)O,使點(diǎn)O到三邊的距離相等.甲同學(xué)的作法如圖1所示,乙同學(xué)的作法如圖2所示,對(duì)于兩人的作法,下列說(shuō)法正確的是( )
A.兩人都對(duì)B.兩人都不對(duì)C.甲對(duì),乙不對(duì)D.乙對(duì),甲不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC為⊙O的直徑,B為⊙O上一點(diǎn),∠ACB=30°,延長(zhǎng)CB至點(diǎn)D,使得CB=BD,過(guò)點(diǎn)D作DE⊥AC,垂足E在CA的延長(zhǎng)線上,連接BE.
(1)求證:BE是⊙O的切線;
(2)當(dāng)BE=3時(shí),求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為6元的新商品,在商場(chǎng)試銷發(fā)現(xiàn):銷售單價(jià)(元/件)與每天銷售量(件)之間滿足如圖所示的關(guān)系:
(1)求出與之間的函數(shù)關(guān)系式.
(2)若你是商場(chǎng)負(fù)責(zé)人,要使每天的利潤(rùn)達(dá)到35元,應(yīng)將售價(jià)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)學(xué)生為了解該校學(xué)生喜歡球類活動(dòng)的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查(要求每位學(xué)生只能填寫(xiě)一種自己喜歡的球類),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
(1)參加調(diào)查的學(xué)生共有 人,在扇形圖中,表示“其他球類”的扇形的圓心角為 度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有2000名學(xué)生,則估計(jì)喜歡“籃球”的學(xué)生共有多少人呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖形的操作過(guò)程:
在圖①中,將線段A1A2向右平移1個(gè)單位到B1B2 , 得到封閉圖形A1A2B2B1(即陰影部分);
在圖②中,將折線A1A2A3向右平移1個(gè)單位到B1B2B3 , 得到封閉圖形A1A2A3B3B2B1(即陰影部分).
(1)在圖③中,請(qǐng)你類似地畫(huà)一條有兩個(gè)折點(diǎn)的折線,同樣向右平移1個(gè)單位,從而得到一個(gè)封閉圖形,并用斜線畫(huà)出陰影;
(2)請(qǐng)你分別寫(xiě)出上述三個(gè)圖形中除去陰影部分后剩余部分的面積:
S1= , S2= , S3= .
(3)聯(lián)想與探索:
如圖④在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個(gè)單位),請(qǐng)你猜想空白部分表示的草地面積是多少并說(shuō)明你的猜想是正確的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.點(diǎn)D在AC上,AD=1cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),沿C→B→A→C的路徑勻速運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),在B點(diǎn)處首次相遇后,點(diǎn)P的運(yùn)動(dòng)速度每秒提高了2cm,并沿B→C→A的路徑勻速運(yùn)動(dòng);點(diǎn)Q保持速度不變,并繼續(xù)沿原路徑勻速運(yùn)動(dòng),兩點(diǎn)在D點(diǎn)處再次相遇后停止運(yùn)動(dòng),設(shè)點(diǎn)P原來(lái)的速度為xcm/s.
(1)點(diǎn)Q的速度為cm/s(用含x的代數(shù)式表示).
(2)求點(diǎn)P原來(lái)的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】朗讀者自開(kāi)播以來(lái),以其厚重的文化底蘊(yùn)和感人的人文情懷,感動(dòng)了數(shù)以億計(jì)的觀眾,岳池縣某中學(xué)開(kāi)展“朗讀”比賽活動(dòng),九年級(jí)、班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)滿分為100分如圖所示.
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九班 | 85 | 85 | |
九班 | 80 |
根據(jù)圖示填寫(xiě)表格;
結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;
如果規(guī)定成績(jī)較穩(wěn)定班級(jí)勝出,你認(rèn)為哪個(gè)班級(jí)能勝出?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量某建筑物CD的高度,先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了100m,此時(shí)自B處測(cè)得建筑物頂部的仰角是45°.已知測(cè)角儀的高度是1.5m,請(qǐng)你計(jì)算出該建筑物的高度.(取 =1.732,結(jié)果精確到1m)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com