【題目】如圖,已知AB//CD,

(1) 求∠1+2+3的度數(shù).

(2) 1+2+3+4 =

根據(jù)以上的規(guī)律求∠1+2+3+…+n =

【答案】1360°;(2540°,(n-1)180°

【解析】

(1)過點(diǎn)PPFAB,然后根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)解答;
(2)分別過點(diǎn)P,QAB的平行線,運(yùn)用三次平行線的性質(zhì),即可得到四個(gè)角的和;同樣作輔助線,運(yùn)用(n-1)次平行線的性質(zhì),則n個(gè)角的和是(n-1)180°

(1)過點(diǎn)PPFAB,如圖:


ABCD
ABCDPF,
∴∠1+APF=180°,
CPF+3=180°,
∴∠1+APF+CPF+3=180°+180°,
即∠1+2+3=360°;
(3)過點(diǎn)P、QPM、QN平行于AB


ABCD,
ABPMQNCD
∴∠1+APM=180°,∠MPQ+PQN=180°,∠NQC+4=180°
∴∠1+2+3+4=540°;

…,

根據(jù)上述規(guī)律,顯然作(n-1)條輔助線,運(yùn)用(n-1)次兩條直線平行,同旁內(nèi)角互補(bǔ),即可得到n個(gè)角的和是(n-1)180°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC=5,AB的垂直平分線DE分別交AB,ACED.

(1)若△BCD的周長為8,求BC的長;

(2)BC=4,求△BCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)DE、F分別在BC、ABAC邊上,且BE=CF,AD+EC=AB

1)求證:DEF是等腰三角形;

2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);

3DEF可能是等腰直角三角形嗎?為什么?

4)請(qǐng)你猜想:當(dāng)∠A為多少度時(shí),∠EDF+EFD=120°,并請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測(cè)試,并對(duì)成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中的信息完成下列問題:

頻數(shù)

頻率

第一組(0x15)

3

0.15

第二組(15x30)

6

a

第三組(30x45)

7

0.35

第四組(45x60)

b

0.20

(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計(jì)圖補(bǔ)充完整;

(2)如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成3030次以上的女學(xué)生有多少人?

(3)已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖所示(圖中每個(gè)小方格邊長均為1個(gè)單位長度)

(1)求△ABC的面積.

(2)ABC中任意一點(diǎn)P(x0y0)經(jīng)平移后對(duì)應(yīng)點(diǎn)為P1(x0+3,y04),將△ABC作同樣的平移得到△A1B1C1,寫出A1B1、C1的坐標(biāo).A1   ,B1   C1   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的內(nèi)接三角形,P為BC延長線上一點(diǎn),PAC=B,AD為O的直徑,過C作CGAD于E,交AB于F,交O于G。

(1)判斷直線PA與O的位置關(guān)系,并說明理由;

(2)求證:AG2=AF·AB;

(3)若O的直徑為10,AC=2,AB=4,求AFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩直線AB,CD相交于點(diǎn)O,已知OE平分BOD,且AOC:AOD=3:7,

1DOE的度數(shù);

2若OFOE,求COF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,DAB邊上任意一點(diǎn),DF∥ACBCF,AE∥BC,∠CDE=ABC=∠ACB=α

(1)如圖1所示,當(dāng)α=60°時(shí)求證:△DCE是等邊三角形;

(2)如圖2所示當(dāng)α=45°時(shí),求證=;

(3)如圖3所示,當(dāng)α為任意銳角時(shí)請(qǐng)直接寫出線段CEDE的數(shù)量關(guān)系_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先尺規(guī)作圖,后進(jìn)行計(jì)算:如圖,△ABC中,∠A105°.

1)試求作一點(diǎn)P,使得點(diǎn)PB、C兩點(diǎn)的距離相等,并且到∠ABC兩邊的距離相等(尺規(guī)作圖,不寫作法,保留作圖痕跡).

2)在(1)的條件下,若∠ACP30°,則∠PBC的度數(shù)為   °.

查看答案和解析>>

同步練習(xí)冊(cè)答案