閱讀理解
九年級(jí)一班數(shù)學(xué)學(xué)習(xí)興趣小組在解決下列問(wèn)題中,發(fā)現(xiàn)該類問(wèn)題不僅可以應(yīng)用“三角形相似”知識(shí)解決問(wèn)題,還可以“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問(wèn)題.
請(qǐng)先閱讀下列“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問(wèn)題的方法,然后再應(yīng)用此方法解決后續(xù)問(wèn)題.
問(wèn)題:如圖(1),直立在點(diǎn)D處的標(biāo)桿CD長(zhǎng)3m,站立在點(diǎn)F處的觀察者從點(diǎn)E處看到標(biāo)桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標(biāo)系,則線段AE可看作一個(gè)一次函數(shù)的圖象.
由題意可得各點(diǎn)坐標(biāo)為:點(diǎn)E(0,1.6),C(2,3),B(17,0),且所求的高度就為點(diǎn)A的縱坐標(biāo).
設(shè)直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得
解得
∴y=0.7x+1.6.
∴當(dāng)x=17時(shí),y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問(wèn)題
請(qǐng)應(yīng)用上述方法解決下列問(wèn)題:
如圖(3),河對(duì)岸有一路燈桿AB,在燈光下,小明在點(diǎn)D處測(cè)得自己的影長(zhǎng)DF=3m,BD=9m,沿BD方向到達(dá)點(diǎn)F處再測(cè)得自己的影長(zhǎng)FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.