如圖,在⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=,拋物線(a≠0)經(jīng)過點A(4,0)與點(﹣2,6).

(1)求拋物線的解析式;

(2)直線m與⊙C相切于點A,交y軸于點D,動點P在線段OB上,從點O出發(fā)向點B運動,同時動點Q在線段DA上,從點D出發(fā)向點A運動,點P的速度為每秒1個單位長,點Q的速度為每秒2個單位長.當PQ⊥AD時,求運動時間t的值.

 

【答案】

(1)y=x2﹣2x   (2)1.8秒

【解析】

試題分析:(1)利用待定系數(shù)法求二次函數(shù)解析式解析式即可。

(2)連接AC交OB于E,作OF⊥AD于F,得出m∥OB,進而求出OD,OF的長,進而利用勾股定理得出DF的長!

解:(1)將點A(4,0)和點(﹣2,6)的坐標代入中,得方程組,

,解得。

∴拋物線的解析式為,即y=x2﹣2x。

(2)如圖所示,連接AC交OB于E.作OF⊥AD于F,

∵直線m切⊙C于點A,∴AC⊥m。

∵弦AB=AO,∴。∴AC⊥OB!鄊∥OB。

∴∠OAD=∠AOB。

∵OA=4,tan∠AOB=,∴OD=OA•tan∠OAD=4×=3。

則OF=OA•sin∠OAD=4×=2.4。

t秒時,OP=t,DQ=2t,

若PQ⊥AD,則 FQ=OP=t.DF=DQ﹣FQ=t,

∴△ODF中,(秒)。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、已知:如圖,在⊙O的內(nèi)接四邊形ABCD中,AB是直徑,∠BCD=130°,過D點的切線PD與直線AB交于P點,則∠ADP的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在⊙O的內(nèi)接△ABC中,AB=AC,D是⊙O上一點,AD的延長線交BC的延長線于點P.
(1)求證:AB2=AD•AP;
(2)若⊙O的直徑為25,AB=20,AD=15,求PC和DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在⊙O的內(nèi)接四邊形ABCD中,AB+AD=12,對角線AC是⊙O的直徑,AE⊥BD,垂足為E,AE=3.設⊙O的半徑為y,AB的長為x.
(1)求y與x函數(shù)關系式;
(2)當AB的長等于多少時,⊙O的面積最大,并求出⊙O的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在⊙O的內(nèi)接△ABC中,∠ABC=30°,AC的延長線與過點B的⊙O的切線相交于點D,若⊙O的半徑OC=1,BD∥OC,則CD的長為( 。
A、1+
3
3
B、
2
3
3
C、
3
3
D、
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在⊙O的內(nèi)接四邊形ABCD中,∠BOD=90°,則∠A=
45
45
°,∠BCD=
135
135
°.

查看答案和解析>>

同步練習冊答案