【題目】如圖,點(diǎn)E是正方形ABCD對角線AC上一點(diǎn),EF⊥AB,EG⊥BC,垂足分別為E,F(xiàn),若正方形ABCD的周長是40cm.
(1)求證:四邊形BFEG是矩形;
(2)求四邊形EFBG的周長;
(3)當(dāng)AF的長為多少時,四邊形BFEG是正方形?
【答案】
(1)證明:∵四邊形ABCD為正方形,
∴AB⊥BC,∠B=90°.
∵EF⊥AB,EG⊥BC,
∴EF∥GB,EG∥BF.
∵∠B=90°,
∴四邊形BFEG是矩形
(2)解:∵正方形ABCD的周長是40cm,
∴AB=40÷4=10cm.
∵四邊形ABCD為正方形,
∴△AEF為等腰直角三角形,
∴AF=EF,
∴四邊形EFBG的周長C=2(EF+BF)=2(AF+BF)=20cm
(3)解:若要四邊形BFEG是正方形,只需EF=BF,
∵AF=EF,AB=10cm,
∴當(dāng)AF=5cm時,四邊形BFEG是正方形
【解析】(1)由正方形的性質(zhì)可得出AB⊥BC、∠B=90°,根據(jù)EF⊥AB、EG⊥BC利用“垂直于同一條直線的兩直線互相平行”,即可得出EF∥GB、EG∥BF,再結(jié)合∠B=90°,即可證出四邊形BFEG是矩形;(2)由正方形的周長可求出正方形的邊長,根據(jù)正方形的性質(zhì)可得出△AEF為等腰直角三角形,進(jìn)而可得出AF=EF,再根據(jù)矩形的周長公式即可求出結(jié)論;(3)由正方形的判定可知:若要四邊形BFEG是正方形,只需EF=BF,結(jié)合AF=EF、AB=10cm,即可得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人一根頭發(fā)的直徑大約為 0.000 071 8 米,數(shù)“0.000 071 8”用科學(xué)記數(shù)法表示正確的是 ( )
A.-7.18×10 5B.-0.718×10 5
C.7.18×10 5D.0.718×10 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸交于O,A,點(diǎn)B在拋物線上且橫坐標(biāo)為2.
(1)如圖1,△AOB的面積是多少?
(2)如圖1,在線段AB上方的拋物線上有一點(diǎn)K,當(dāng)△ABK的面積最大時,求點(diǎn)K的坐標(biāo)及△ABK的面積;
(3)在(2)的條件下,點(diǎn)H 在y軸上運(yùn)動,點(diǎn)I在x軸上運(yùn)動. 則當(dāng)四邊形BHIK周長最小時,求出H、I的坐標(biāo)以及四邊形BHIK周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件利用尺規(guī)作圖作△ABC,作出的△ABC不唯一的是( )
A. AB=7,AC=5,∠A=60° B. AC=5,∠A=60°∠C=80°
C. AB=7,AC=5,∠B=40° D. AB=7,BC=6,AC=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= ,對角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).
(1)證明:當(dāng)∠AOF=90°時,四邊形ABEF是平行四邊形;
(2)試說明在旋轉(zhuǎn)過程中,AF與CE總保持相等;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時∠AOF度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】擲一枚質(zhì)地均勻的骰子,看落地后朝上的面的點(diǎn)數(shù).
(1)會出現(xiàn)哪些可能的結(jié)果?
(2)擲出的點(diǎn)數(shù)為1與擲出的點(diǎn)數(shù)為2的頻率相同嗎?擲出的點(diǎn)數(shù)為1與擲出的點(diǎn)數(shù)為3的頻率相同嗎?
(3)每種結(jié)果出現(xiàn)的頻率相同嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com