【題目】如圖1,四邊形ABCD是正方形,點E是邊BC上一點,點F在射線CM上,∠AEF=90°,AE=EF,過點F作射線BC的垂線,垂足為H,連接AC.
(1) 試判斷BE與FH的數(shù)量關(guān)系,并說明理由;
(2) 求證:∠ACF=90°;
(3) 連接AF,過A,E,F三點作圓,如圖2. 若EC=4,∠CEF=15°,求的長.
圖1 圖2
【答案】(1)BE="FH" ;理由見解析
(2)證明見解析
(3)=2π
【解析】
試題(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,從而可知△FHC是等腰直角三角形,∠FCH為45°,而∠ACB也為45°,從而可證明
(3)由已知可知∠EAC=30°,AF是直徑,設(shè)圓心為O,連接EO,過點E作EN⊥AC于點N,則可得△ECN為等腰直角三角形,從而可得EN的長,進而可得AE的長,得到半徑,得到所對圓心角的度數(shù),從而求得弧長
試題解析:(1)BE=FH。理由如下:
∵四邊形ABCD是正方形 ∴∠B=90°,
∵FH⊥BC ∴∠FHE=90°
又∵∠AEF=90° ∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°
∴∠HEF=∠BAE ∴ ∠AEB=∠EFH 又∵AE=EF
∴△ABE≌△EHF(SAS)
∴BE=FH
(2)∵△ABE≌△EHF
∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"
∴CH=FH
∴∠FCH=45°,∴∠FCM=45°
∵AC是正方形對角線,∴ ∠ACD=45°
∴∠ACF=∠FCM +∠ACD =90°
(3)∵AE=EF,∴△AEF是等腰直角三角形
△AEF外接圓的圓心在斜邊AF的中點上。設(shè)該中點為O。連結(jié)EO得∠AOE=90°
過E作EN⊥AC于點N
Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=
Rt△ENA中,EN =
又∵∠EAF=45° ∠CAF=∠CEF=15°(等弧對等角)
∴∠EAC=30°
∴AE=
Rt△AFE中,AE== EF,∴AF=8
AE所在的圓O半徑為4,其所對的圓心角為∠AOE=90°
=2π·4·(90°÷360°)=2π
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為促進課堂教學(xué),提高教學(xué)質(zhì)量,對九年級學(xué)生進行了一次“你最喜歡的課堂教學(xué)方式”的問卷調(diào)查.根據(jù)收回的問卷,學(xué)校繪制了如下圖表,請你根據(jù)圖表中提供的信息,解答下列問題.
(1)請把三個圖表中的空缺部分都補充完整;
(2)你最喜歡以上哪一種教學(xué)方式或另外的教學(xué)方式,請?zhí)岢瞿愕慕ㄗh,并簡要說明理由(字數(shù)在20字以內(nèi)).
編號 | 教學(xué)方式 | 最喜歡的頻數(shù) | 頻率 |
1 | 教師講,學(xué)生聽 | 20 | 0.10 |
2 | 教師提出問題,學(xué)生探索思考 | 0.5 | |
3 | 學(xué)生自行閱讀教材,獨立思考 | 30 | |
4 | 分組討論,解決問題 | 0.25 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月19日,河南省教育廳發(fā)布《關(guān)于推進中小學(xué)生研學(xué)旅行的實施方案》,某中學(xué)為落實方案,給學(xué)生提供了以下五種主題式研學(xué)線路:A.“紅色河南”,B.“厚重河南”C.“出彩河南”,D.“生態(tài)河南”,E.“老家河南”為了解學(xué)生最喜歡哪一種研學(xué)線路(每人只選取一種),隨機抽取了部分學(xué)生進行調(diào)查,將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.根據(jù)以上信息解答下列問題:
調(diào)查結(jié)果統(tǒng)計表
主題 | 人數(shù)/人 | 百分比 |
A | 75 | n% |
B | m | 30% |
C | 45 | 15% |
D | 60 | |
E | 30 |
(1)本次接受調(diào)查的總?cè)藬?shù)為 人,統(tǒng)計表中m= ,n= .
(2)補全條形統(tǒng)計圖.
(3)若把條形統(tǒng)計圖改為扇形統(tǒng)計圖,則“生態(tài)河南”主題線路所在扇形的圓心角度是 .
(4)若該實驗中學(xué)共有學(xué)生3000人,請據(jù)此估計該校最喜歡“老家河南”主題線路的學(xué)生有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大唐芙蓉園是中國第一個全方位展示盛唐風貌的大型皇家園林式文化主題公園,全園標志性建筑一紫云樓為代表,展示了“形神升騰紫云景,天下臣服帝王心”的唐代帝王風范(如圖①).小風和小花等同學(xué)想用一些測量工具和所學(xué)的幾何知識測量“紫云樓”的高度,來檢驗自己掌握知識和運用知識的能力,他們經(jīng)過研究需要兩次測量:首先,在陽光下,小風在紫云樓影子的末端C點處豎立一根標桿CD,此時,小花測得標桿CD的影長CE=2米,CD=2米;然后,小風從C點沿BC方向走了5.4米,到達G處,在G處豎立標桿FG,接著沿BG后退到點M處時,恰好看見紫云樓頂端A,標桿頂端F在一條直線上,此時,小花測得CM=0.6米,小風的眼睛到地面的距離HM=1.5米,FG=2米.
如圖②,已知AB⊥BM,CD⊥BM,FG⊥BM,HM⊥BM,請你根據(jù)題中提供的相關(guān)信息,求出紫云樓的高AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當t=2時,AD=4.
(1)求拋物線的函數(shù)表達式.
(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明有5根小棒,長度分別為3cm,4cm,5cm,6cm,7cm,現(xiàn)從中任選3根小棒,怡好能搭成三角形的概率是______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點D,交BE于點F.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com